Return to search

The Impact of Modulating the Activity of Adult-born Hippocampal Neurons on Neurogenesis and Behavior

Adult hippocampal neurogenesis—a unique form of plasticity in the dentate gyrus (DG)—is regulated by experience, and when manipulated can have specific effects on behavior. Different methods have been used over the years to study new neurons’ functional role in the hippocampus, many of which focus on ablating neurogenesis. While ablation methods can test the necessity of adult-born granule cells (abGCs) for behavior, these techniques remove all abGCs from the circuit and thus do not allow one to determine which properties of abGCs are required for behavior. Such information is required to understand the mechanism of their action. Thus, new strategies are needed to determine what properties of young abGCs allow them to distinguish themselves from their mature counterparts and uniquely impact behavior.
Recent hypotheses have suggested that the enhanced synaptic plasticity exhibited by 4–6-week-old abGCs allows them to uniquely contribute to hippocampal circuit function, and thus behavior. The primary goal of this thesis was to explore the contribution young abGCs’ heightened synaptic plasticity makes to hippocampal function. This was achieved using a transgenic mouse approach that allowed for the conditional deletion of NR2B from abGCs. Overall, iNR2BNes mice generated the same number of new neurons in adulthood as control mice at baseline. These neurons survived and matured with only a slight reduction in dendritic complexity. However, a potentially important electrophysiological property of these neurons—their enhanced synaptic plasticity—had been eliminated. From an electrophysiological standpoint, iNR2BNes mice resemble mice with ablated neurogenesis, while from all other neurogenic standpoints examined they most closely resemble wild-type mice. Consequently, these mice provided a novel model to test the extent to which young abGCs’ enhanced plasticity contributes to hippocampal-dependent behaviors. The results reveal that eliminating NR2B-containing NMDA receptors from abGCs does not alter baseline anxiety or antidepressant (AD)-like behavior. However, iNR2BNes mice differed from controls in measures of cognitive function. These mice were able to learn in the contextual fear conditioning test, but were impaired in the more difficult contextual fear discrimination test. Mice also exhibited a decreased novelty exploration phenotype that impaired their performance in the novel object recognition test. Together, these results indicate that the NR2B-dependent heightened plasticity exhibited by 4–6-week-old abGCs is necessary for responses to novelty and fine contextual discrimination, but does not contribute to baseline anxiety or emotionality.
AD treatment increases levels of adult neurogenesis in the hippocampus, and these newborn neurons have been shown to be necessary for some of the behavioral effects of ADs seen in rodents. In addition, the maturation timeline of adult neurogenesis correlates with the onset of behavioral responses to ADs. ADs also enhance a neurogenesis-dependent form of long-term potentiation (LTP) in the DG evoked by medial perforant path stimulation under intact GABAergic tone called ACSF-LTP. Thus, a potential mechanism by which abGCs may contribute to AD behavioral efficacy is by providing extra plastic units to the DG circuit. This theory was tested by once again using the mouse line in which NR2B can be conditionally deleted from abGCs in the DG. Here, we found that deletion of the NR2B subunit significantly attenuated a neurogenesis-dependent behavioral response to fluoxetine in the novelty suppressed feeding test, and additionally blocked fluoxetine’s ability to enhance young abGCs’ maturation and subsequent integration into the hippocampal network. This suggests that eliminating abGCs’ enhanced plasticity decreases their ability to influence DG output resulting in an AD response that is less robust than seen in control mice. Control experiments revealed the specificity of this effect, as NR2B deletion did not impact the effect of fluoxetine in a neurogenesis-independent behavioral assay (tail suspension test) or in an assay that was insensitive to fluoxetine in this strain of mice (elevated plus maze).
Our efforts to isolate the contribution of abGCs’ unique physiology from the neurogenic effects of fluoxetine were not entirely successful as the results presented here also revealed slight group differences in neurogenesis between control mice and mice lacking NR2B in young neurons. Yet, this data still supports the idea that fluoxetine increases the ability of abGCs to participate in DG output by increasing the chance that new neurons will be activated during DG stimulation. This may be achieved either by increasing their overall number, increasing their potential to make synaptic connections, or increasing their ability to strengthen their connections. However, due to the close link between activity and maturation that appears to be enhanced with fluoxetine treatment, a different approach with greater temporal resolution is needed to separate the neurogenic effects of fluoxetine from the physiological contribution abGCs make to hippocampal output. With this in mind, a mouse line in which abGCs could be temporally inhibited was also generated. Cellular and behavioral characterization of mice conditionally expressing hM4Di—a mutated muscarinic acetylcholine receptor that is insensitive to endogenous acetylcholine, but can be activated by the biologically inert, highly bioavailable compound, clozapine N-oxide (CNO)—has begun. Results show that acute CNO treatment in mice expressing this designer receptor exclusively activated by a designer drug (DREADD) in DG granule cells can impair encoding of contextual fear memory. Chronically treating these mice had an anxiogenic effect in the open field test, but otherwise anxiety and emotionality in these mice were comparable to controls. Chronic CNO treatment in mice expressing hM4Di in young abGCs effectively decreased these cells’ dendritic complexity, but did not alter proliferation or early survival. Thus, hM4Di DREADDs represent a novel tool that can be used to modulate activity of neurons in a temporally restricted manner, allowing for both acute and chronic manipulations of hippocampal granule cells.
The experiments put forth in this thesis will highlight the importance of abGCs enhanced plasticity. The utility as well as potential pitfalls of the mouse models used here to test theories of abGC function will also be explored. Hopefully this analysis will provide an improved framework in which future experiments can be developed with the aim of uncovering novel insights into the hippocampal circuitry that underlies learning and memory and discovering new strategies for the treatment of neurological and psychiatric disorders.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8CN73Q9
Date January 2016
CreatorsTannenholz, Lindsay Elsa
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0046 seconds