This research studies the use of class=SpellE>titania (titanium dioxide, TiO2) as a catalyst for deoxygenation of class=SpellE>syngas derived oxygenates. These oxygenates are formed as byproducts when biomass derived syngas (CO & H2) is converted to ethanol on Rhodium or Molybdenum based catalysts. Conversion of these oxygenates to hydrocarbon would enhance the viability of class=SpellE>syngas to gasoline technology. This study revealed that class=SpellE>titania can indeed be used to convert syngas derived oxygenates to hydrocarbon at high temperature and pressure. Acetone condensation to mesitylene was studied very closely. The study revealed that the acid-base dual nature of class=SpellE>titania is key for the success of this reaction. When titaniawas combined with the zeolite H+/ZSM-5, a broad range of gasoline type hydrocarbon could be produced. Ethanol conversion to higher alcohols was studied as part of a partial deoxygenation of ethanol research. While this conversion was possible on class=GramE>titania, zirconia proved to be a better catalyst. Ethanol could be converted to 1-butanol and other higher alcohols at high temperature and pressure. The mechanism by which this occurs was studied as well.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-2279 |
Date | 30 April 2011 |
Creators | Daggolu, Prashant Reuben |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0055 seconds