DNA double strand breaks (DSB) are the most toxic of all types of DNA lesions. In Saccharomyces cerevisiae, DNA DSBs are predominantly repaired by the homologous recombination repair (HRR) pathway. The initial step of HRR requires extensive processing of DNA ends from the 5' to 3' direction by specific endo-exonuclease(s) (EE) at the DSB sites, but no endo-exonuclease(s) has yet been conclusively determined for such processing of DSBs. S. cerevisiae TRM2/RNC1 is a candidate endo-exonuclease that was previously implicated for its role in the HRR pathway and was also shown to have methyl transferase activity primarily located at its c-terminus. / In this dissertation, we provided compelling biochemical and genetic evidence that linked TRM2/RNC1 to the DNA end processing role in HRR. Trm2/Rnc1p purified with a small calmodulin binding peptide (CBP) tag displayed single strand (ss) specific endonuclease and double strand (ds) specific 5' to 3' exonuclease activity characteristic of endo-exonucleases involved in HRR. Intriguingly, purified Trm2/Rnc1p deleted for its C-terminal methyl transferase domain retained its nuclease activity but not the methyl transferase activity indicating that the C-terminal part responsible for its methyl transferase function is not required for its nuclease activity. / Our genetic and functional studies with S. cerevisiae trm2/rnc1 single mutants alone or in combination with other DNA DSB repair mutants after treatment with the DNA damaging drug methyl methane sulfonate (MMS) or IR that is believed to produce DSBs, or with specific induction of DNA DSBs at the MAT locus by HO-endonuclease demonstrated an epistatic relationship of TRM2/RNC1 with the major recombination factor RAD52. These studies suggested that TRM2/RNC1 probably acts at an earlier step than RAD52 in the HRR pathway. The genetic evidence also indicated a possible functional redundancy with the bona fide endo-exonuclease EXO1 in the processing of DNA ends at the DSB sites. / In a recent report, the immuno-purified mouse homologue of TRM2/RNC1 exhibited similar enzymatic properties as the endo-exonucleases involved in HRR. A small molecular inhibitor pentamidine specifically inhibited the nuclease activity of the mouse EE and sensitized various cancer cells to DNA damaging agents commonly used in cancer chemotherapy. We specifically suppressed expression of the mouse EE using small interfering RNA (siRNA) that conferred sensitivity of B16F10 melanoma cells to a variety of DNA damaging drugs often used in cancer treatment. This further validated our earlier claim of the endo-exonuclease as a potential therapeutic target in treating cancer.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.103373 |
Date | January 2007 |
Creators | Choudhury, Sibgat Ahmed. |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Division of Experimental Medicine.) |
Rights | © Sibgat Ahmed Choudhury, 2007 |
Relation | alephsysno: 002652189, proquestno: AAINR38573, Theses scanned by UMI/ProQuest. |
Page generated in 0.0019 seconds