Return to search

Computational modeling of the hydrolysis of 2'-deoxyribonucleic acids

The mechanism for the hydrolysis of 2′-deoxyribonucleosides is examined using computational chemistry techniques. Initially, a model capable of accurately predicting the mechanism and activation barrier for the uncatalyzed hydrolysis of 2′-deoxyuridine is designed. It is found that the smallest model includes both explicit and implicit solvation during the optimization step. Next, this hybrid solvation model is applied to four natural nucleosides, namely 2′-deoxyadenosine, 2′-deoxycytidine, 2′-deoxyguanosine and thymidine. The hybrid model correctly predicts the trend in activation Gibbs energies for the pyrimidines and purines, separately. Finally, the concepts developed during the generation of the uncatalyzed hydrolysis model are applied to the mechanism of action of a glycosylase enzyme, namely human uracil DNA glycosylase. A hybrid ONIOM approach is utilized to study the experimentally proposed two-step mechanism. Results regarding the protonation state of His148 are inconclusive, and future directions are proposed. / xiii, [131] leaves : ill. (some col.) ; 29 cm

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:ALU.w.uleth.ca/dspace#10133/1292
Date January 2009
CreatorsPrzybylski, Jennifer L., University of Lethbridge. Faculty of Arts and Science
ContributorsWetmore, Stacey
PublisherLethbridge, Alta. : University of Lethbridge, Dept. of Chemistry and Biochemistry, c2009, Arts and Science, Department of Chemistry
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationThesis (University of Lethbridge. Faculty of Arts and Science)

Page generated in 0.0023 seconds