Return to search

Uma introdução ao cálculo das partições para espaços topológicos / An introduction to partition calculus for topological spaces

O objetivo deste trabalho é apresentar o cálculo das partições para espaços topológicos. Essa área trata do estudo de resultados do seguinte tipo: \"dados os espaços topológicos X e Y, um número natural n e um cardinal kappa, para qualquer que seja a partição de [X]^n em kappa pedaços, existe um subespaço H de X homeomorfo ao Y tal que [H]^n está contido num mesmo pedaço\". Iremos estudar esse tipo de afirmação, principalmente no caso em que n = 1 e Y é igual a um ordinal enumerável ou igual ao omega_1. Também veremos resultados que envolvem o cubo de Cantor. / The purpose of this work is to present the partition calculus for topological spaces. This area deals with the study of results of the following type: \"given the topological spaces X and Y, a natural number n and a cardinal number kappa, for whatever the partition of [X]^n into kappa pieces, there is a subspace H of X homeomorphic to Y such that [H]^n is contained in the same piece\". We will study results of this type mainly in the case where n = 1 and Y is a countable ordinal or the omega_1. We will also see results involving the Cantor cube.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-07062019-120616
Date01 April 2019
CreatorsOnishi, Rubens Rodrigues
ContributorsJunqueira, Lucia Renato
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0016 seconds