Orientador: José Alfredo Covolan Ulson / Banca: José Carlos de Melo Vieira Junior / Banca: Renato Crivellari Creppe / Resumo: Os transformadores são equipamentos importantes do sistema elétrico de potência, possuem alto custo e suas falhas tem influência direta na qualidade da energia entregue aos consumidores. Uma das principais causas de falhas em transformadores imersos em líquido isolante, as descargas parciais, advém da degradação física e química do sistema de isolação devido à diversos fatores tais como sobrecarga, cargas não-lineares, chaveamento e superaquecimento. Essas descargas parciais aceleram a degradação do dielétrico do transformador e podem levar à destruição do equipamento, ocasionando elevado prejuízo financeiro. Dessa forma, são necessárias ações de prevenção de falhas causadas por descargas parciais em transformadores, através de métodos de monitoramento e localização. Este trabalho teve por objetivo apresentar um método de localização de descargas parciais em transformadores de potência imersos em óleo mineral isolante utilizando o método de emissão acústica e sistemas inteligentes do tipo redes neurais artificiais e algoritmos genéticos. Foram aplicadas métricas de processamento de sinais aos sinais acústicos gerados a partir de descargas parciais e obtidos através de sensores piezelétricos de baixo custo instalados no lado externo do tanque do transformador. Estas métricas foram utilizadas para treinamento das redes neurais a fim de obter a distância euclidiana entre os sensores e as descargas parciais. Essas distâncias euclidianas foram utilizadas em um sistema não-linear d... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Transformers are important devices of the electric power system, which have high cost and their failures have a direct influence on the power quality delivered to the consumers. One of the main causes of failures in oil-immersed transformers, the partial discharges, comes from the physical and chemical degradation of the insulation system due to several factors such as overload, non-linear loads, switching and overheating. These partial discharges accelerate the degradation of the transformer dielectric and they can lead to the destruction of the equipment, causing high financial losses. Thus, actions are necessary to prevent faults caused by partial discharges in transformers, through monitoring and locating methods. The aim of this work was to present a method for locating partial discharges in oil-immersed power transformers using the acoustic emission method and intelligent systems such as artificial neural networks and genetic algorithms. Signal processing metrics were applied to the acoustic signals generated from partial discharges and obtained by low-cost piezoelectric sensors installed on the external side of the transformer tank. These metrics were used to train the neural networks in order to obtain the euclidean distance between the sensors and the partial discharges. These euclidean distances were used in a nonlinear location system, which was solved through a genetic algorithm in order to obtain the three-dimensional coordinates of the partial discharge. The ana... (Complete abstract click electronic access below) / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000889069 |
Date | January 2017 |
Creators | Brunini, Danilo de Melo. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Bauru). |
Publisher | Bauru, |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese, Portuguese, Texto em português; resumo em inglês |
Detected Language | Portuguese |
Type | text |
Format | 99 f. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.002 seconds