Aus der Einleitung:
„Equational unification is a generalization of syntactic unification in which semantic properties of function symbols are taken into account. For example, assume that the function symbol '+' is known to be commutative. Given the unication problem x + y ≐ a + b (where x and y are variables, and a and b are constants), an algorithm for syntactic unification would return the substitution {x ↦ a; y ↦ b} as the only (and most general) unifier: to make x + y and a + b syntactically equal, one must replace the variable x by a and y by b. However, commutativity of '+' implies that {x ↦ b; y ↦ b} also is a unifier in the sense that the terms obtained by its application, namely b + a and a + b, are equal modulo commutativity of '+'. More generally, equational unification is concerned with the problem of how to make terms equal modulo a given equational theory, which specifies semantic properties of the function symbols that occur in the terms to be unified.”
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:79220 |
Date | 19 May 2022 |
Creators | Baader, Franz, Schulz, Klaus U. |
Publisher | Aachen University of Technology |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:report, info:eu-repo/semantics/report, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa2-785040, qucosa:78504 |
Page generated in 0.0018 seconds