Return to search

Unification Theory - An Introduction

Aus der Einleitung:
„Equational unification is a generalization of syntactic unification in which semantic properties of function symbols are taken into account. For example, assume that the function symbol '+' is known to be commutative. Given the unication problem x + y ≐ a + b (where x and y are variables, and a and b are constants), an algorithm for syntactic unification would return the substitution {x ↦ a; y ↦ b} as the only (and most general) unifier: to make x + y and a + b syntactically equal, one must replace the variable x by a and y by b. However, commutativity of '+' implies that {x ↦ b; y ↦ b} also is a unifier in the sense that the terms obtained by its application, namely b + a and a + b, are equal modulo commutativity of '+'. More generally, equational unification is concerned with the problem of how to make terms equal modulo a given equational theory, which specifies semantic properties of the function symbols that occur in the terms to be unified.”

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:79220
Date19 May 2022
CreatorsBaader, Franz, Schulz, Klaus U.
PublisherAachen University of Technology
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:report, info:eu-repo/semantics/report, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:14-qucosa2-785040, qucosa:78504

Page generated in 0.0017 seconds