Return to search

In vitro rectal transport and rectal ultrastructure in the desert locust (Schistocerca gregaria)

The rectal pad of Schistocerca gregaria consists of a layer of large columnar epithelial cells and a layer of smaller oval-shaped cells. Both layers appear specialized for transport, as judged by the large number of mitochondria and membrane infoldings within the two cell types. The ultrastructure of the columnar epithelium and of the secondary cells is described as it appears under the electron microscope.
The ability of the rectum to transport water and salts was tested in vitro. Unlike the in vivo preparation, the rectum in vitro does not transport potassium and chloride and has only a limited ability to transport sodium and water against a gradient. Dinitrophenol (10⁻³M.), iodoacetate (10⁻²M.) and ouabain (10⁻²M.) abolish water and sodium transport. Potassium cyanide (10⁻²M.) and ouabain (10⁻³M.) do not appear to inhibit water or sodium transport. Iodoacetate (10⁻³M.) inhibits sodium transport but does not affect water transport. The in vitro rectum is dependent upon anaerobic respiration. The results are discussed in terms of a scheme presented for in vivo cellular function. (Phillips, 1965).
The studies of ultrastructure and transport physiology of the locust rectum do not refute the hypothetical schemes presented in this thesis. / Science, Faculty of / Zoology, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/36844
Date January 1966
CreatorsIrvine, H. Barry
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0141 seconds