Return to search

Aerostructural Optimization of Non-planar Lifting Surfaces

Non-planar lifting surfaces offer potentially significant gains in aerodynamic efficiency by lowering induced drag. Non-aerodynamic considerations, such as structures can impact the overall efficiency. Here, a panel method and equivalent beam finite element model are used to explore non-planar configurations taking into account the coupling between aerodynamics and structures. A single discipline aerodynamic optimization and a multidisciplinary aerostructural optimization are investigated. Due to the complexity of the design space and the presence of multiple local minima, an augmented Lagrangian particle swarm optimizer is used. The aerodynamic optimum solution found for rectangular lifting surfaces is a box wing, while allowing for sweep and taper yields a joined wing. Adding parasitic drag in the aerodynamic model reduces the size of the non--planar elements. The aerostructural optimal solution found is a winglet configuration when the span is constrained and a wing rake when there is no such constraint.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/17433
Date14 July 2009
CreatorsJansen, Peter Willi
ContributorsMartins, Joaquim R. R. A.
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds