The reliable operation of Integrated Circuits (ICs) has become increasingly difficult to
achieve in the deep sub-micron (DSM) era. With continuously decreasing device feature
sizes, combined with lower supply voltages and higher operating frequencies, the noise
immunity of VLSI circuits is decreasing alarmingly. Thus, VLSI circuits are becoming
more vulnerable to noise effects such as crosstalk, power supply variations and radiation-induced
soft errors. Among these noise sources, soft errors (or error caused by radiation
particle strikes) have become an increasingly troublesome issue for memory arrays as well
as combinational logic circuits. Also, in the DSM era, process variations are increasing
at an alarming rate, making it more difficult to design reliable VLSI circuits. Hence, it
is important to efficiently design robust VLSI circuits that are resilient to radiation particle
strikes and process variations. The work presented in this dissertation presents several
analysis and design techniques with the goal of realizing VLSI circuits which are tolerant
to radiation particle strikes and process variations.
This dissertation consists of two parts. The first part proposes four analysis and two
design approaches to address radiation particle strikes. The analysis techniques for the
radiation particle strikes include: an approach to analytically determine the pulse width
and the pulse shape of a radiation induced voltage glitch in combinational circuits, a technique
to model the dynamic stability of SRAMs, and a 3D device-level analysis of the
radiation tolerance of voltage scaled circuits. Experimental results demonstrate that the proposed techniques for analyzing radiation particle strikes in combinational circuits and
SRAMs are fast and accurate compared to SPICE. Therefore, these analysis approaches
can be easily integrated in a VLSI design flow to analyze the radiation tolerance of such
circuits, and harden them early in the design flow. From 3D device-level analysis of the radiation
tolerance of voltage scaled circuits, several non-intuitive observations are made and
correspondingly, a set of guidelines are proposed, which are important to consider to realize
radiation hardened circuits. Two circuit level hardening approaches are also presented
to harden combinational circuits against a radiation particle strike. These hardening approaches
significantly improve the tolerance of combinational circuits against low and very
high energy radiation particle strikes respectively, with modest area and delay overheads.
The second part of this dissertation addresses process variations. A technique is developed
to perform sensitizable statistical timing analysis of a circuit, and thereby improve the
accuracy of timing analysis under process variations. Experimental results demonstrate that
this technique is able to significantly reduce the pessimism due to two sources of inaccuracy
which plague current statistical static timing analysis (SSTA) tools. Two design approaches
are also proposed to improve the process variation tolerance of combinational circuits and
voltage level shifters (which are used in circuits with multiple interacting power supply
domains), respectively. The variation tolerant design approach for combinational circuits
significantly improves the resilience of these circuits to random process variations, with a
reduction in the worst case delay and low area penalty. The proposed voltage level shifter
is faster, requires lower dynamic power and area, has lower leakage currents, and is more
tolerant to process variations, compared to the best known previous approach.
In summary, this dissertation presents several analysis and design techniques which
significantly augment the existing work in the area of resilient VLSI circuit design.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2009-05-410 |
Date | 2009 May 1900 |
Creators | Garg, Rajesh |
Contributors | Khatri, Sunil P. |
Source Sets | Texas A and M University |
Language | English |
Detected Language | English |
Type | Book, Thesis, Electronic Dissertation, text |
Format | application/pdf |
Page generated in 0.0018 seconds