Return to search

Multidisciplinary Design Optimization of A Highly Flexible Aeroservoelastic Wing

A multidisciplinary design optimization framework is developed that integrates control system design with aerostructural design for a highly-deformable wing. The objective of this framework is to surpass the existing aircraft endurance limits through the use of an active load alleviation system designed concurrently with the rest of the aircraft. The novelty of this work is two fold. First, a unified dynamics framework is developed to represent the full six-degree-of-freedom rigid-body along with the structural dynamics. It allows for an integrated control design to account for both manoeuvrability (flying quality) and aeroelasticity criteria simultaneously. Secondly, by synthesizing the aircraft control system along with the structural sizing and aerodynamic shape design, the final design has the potential to exploit synergies among the three disciplines and yield higher performing aircraft. A co-rotational structural framework featuring Euler--Bernoulli beam elements is developed to capture the wing's nonlinear deformations under the effect of aerodynamic and inertial loadings. In this work, a three-dimensional aerodynamic panel code, capable of calculating both steady and unsteady loadings is used.
Two different control methods, a model predictive controller (MPC) and a 2-DOF mixed-norm robust controller, are considered in this work to control a highly flexible aircraft. Both control techniques offer unique advantages that make them promising for controlling a highly flexible aircraft. The control system works towards executing time-dependent manoeuvres along with performing gust/manoeuvre load alleviation.
The developed framework is investigated for demonstration in two design cases: one in which the control system simply worked towards achieving or maintaining a target altitude, and another where the control system is also performing load alleviation. The use of the active load alleviation system results in a significant improvement in the aircraft performance relative to the optimum result without load alleviation. The results show that the inclusion of control system discipline along with other disciplines at early stages of aircraft design improves aircraft performance. It is also shown that structural stresses due to gust excitations can be better controlled by the use of active structural control systems which can improve the fatigue life of the structure.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/32726
Date21 August 2012
CreatorsHaghighat, Sohrab
ContributorsLiu, Hugh, Martins, Joaquim R. R. A.
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0115 seconds