Return to search

Computer modeling and analyses of multisection distributed feedback lasers.

by So-kuen C. Liew. / Thesis (Ph.D.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves [40-45, 3rd gp.]) and index. / Abstract --- p.ii / Acknowledgments --- p.iv / Table of Contents --- p.v / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Distributed Feedback Lasers --- p.1 / Chapter 1.2 --- Computer Model --- p.6 / Chapter 1.3 --- Analyses --- p.8 / Chapter 1.4 --- Organization of Thesis --- p.11 / Chapter 2 --- Computer Model --- p.13 / Chapter 2.1 --- Comparison of Theoretical Models --- p.15 / Chapter 2.2 --- Assumptions and Approximations --- p.17 / Chapter 2.2.1 --- Longitudinal Spatial Hole Burning --- p.17 / Chapter 2.2.2 --- Spontaneous Emission --- p.18 / Chapter 2.2.3 --- Nonlinear Gain Saturation --- p.19 / Chapter 2.2.4 --- Carrier-Induced Index Change --- p.20 / Chapter 2.2.5 --- Single-mode Operation Assumption --- p.22 / Chapter 2.2.6 --- Otbers --- p.22 / Chapter 2.3 --- Theories and Approaches --- p.25 / Chapter 2.3.1 --- Coupled Wave Theory --- p.25 / Description --- p.25 / Stop-Band --- p.29 / Second-Order DFB Laser --- p.30 / DFB Designs To Improve SMSR --- p.30 / Chapter 2.3.2 --- Transfer Matrix Approach --- p.32 / Chapter 2.4 --- Above-Threshold Model --- p.34 / Chapter 2.4.1 --- Introduction --- p.34 / Chapter 2.4.2 --- Formalism --- p.36 / Facet Output Power and Optical Spectrum --- p.39 / Photon Density Distribution --- p.41 / Variance of Photon Density Distribution --- p.42 / Nearfield Distribution --- p.42 / Surface Emission --- p.43 / Power-Current Characteristics --- p.44 / Optical spectrum --- p.45 / Subthreshold Analysis --- p.47 / Linear Yield Analysis --- p.47 / Chapter 2.4.3 --- Computer Implementation --- p.48 / Flowchart --- p.48 / Subroutines --- p.52 / "Runtime, Numerical Stability" --- p.56 / Chapter 2.5 --- "Discussion,Summary and Future Work" --- p.59 / Chapter 2.5.1 --- Validation of the DFB Model --- p.59 / Chapter 2.5.2 --- Summary --- p.67 / Chapter 2.5.3 --- Topics for Future Work in Theoretical Modeling --- p.68 / Chapter 3 --- Analysis of DFBDBR Laser --- p.72 / Chapter 3.1 --- Introduction --- p.72 / Chapter 3.2 --- Subthreshold Analysis --- p.78 / Chapter 3.2.1 --- Introduction --- p.78 / Chapter 3.2.2 --- Results --- p.81 / Symmetric End-Sections --- p.81 / Asymmetric End-Sections --- p.85 / Chapter 3.3 --- Above-threshold Analysis --- p.88 / Chapter 3.3.1 --- Analysis --- p.89 / Chapter 3.3.2 --- Length Ratio --- p.92 / Chapter 3.3.3 --- Design Plot --- p.99 / Chapter 3.3.4 --- Longitudinal Spatial Hole Burning --- p.102 / Chapter 3.3.5 --- Effective Linewidth Enhancement Factor --- p.104 / Chapter 3.3.6 --- Asymmetric DFBDBR --- p.107 / Chapter 3.4 --- Conclusion --- p.109 / Chapter 4 --- Analysis of Complex-Coupled DFB --- p.110 / Chapter 4.1 --- Introduction --- p.110 / Chapter 4.2 --- Laser Structure --- p.113 / Chapter 4.2.1 --- Grating Layer --- p.114 / Chapter 4.2.2 --- Parameter Values --- p.119 / Chapter 4.3 --- Above-Threshold Analysis of CCDFB --- p.122 / Chapter 4.3.1 --- Threshold Current --- p.122 / Grating Duty Cycle = 0.36 --- p.122 / Grating Duty Cycle = 0.15 --- p.128 / Chapter 4.3.2 --- Power Efficiency --- p.131 / Grating Duty Cycle = 0.36 --- p.131 / Grating Duty Cycle = 0.15 --- p.136 / Chapter 4.3.3 --- Summary --- p.137 / Chapter 4.4 --- Yield Analysis of LCDFB and QWDFB --- p.138 / Chapter 4.4.1 --- Introduction --- p.138 / Chapter 4.4.2 --- Method --- p.140 / Chapter 4.4.3 --- Results --- p.141 / Facet Phase Angle --- p.141 / Quarterwave Phase-Shifted DFB Laser --- p.144 / Loss-Coupled DFB Laser --- p.148 / Chapter 4.5 --- Conclusion --- p.154 / Chapter 5 --- Summary and Conclusion --- p.157 / Chapter 5.1 --- Summary --- p.157 / Chapter 5.1.1 --- Summary of Major Contributions --- p.157 / Chapter 5.1.2 --- Summary of Modeling and Validation --- p.159 / Chapter 5.1.3 --- Summary of Model Applications --- p.160 / DFBDBR Laser --- p.161 / Loss-Coupled DFB Laser --- p.162 / Chapter 5.2 --- Topics for Future Studies --- p.163 / References --- p.R-l / Appendices --- p.A-l / Chapter A. --- Derivations --- p.A-l / Chapter A.1 --- Noise Power --- p.A-l / Chapter A.2 --- Product of Field Vector and Its Adjoint --- p.A-2 / Chapter A.3 --- Gain-Coupling Coefficient --- p.A-5 / Chapter B. --- Subroutines in Computer Program --- p.A-8 / Chapter B.l --- Subroutines in 'drive.f' --- p.A-8 / Chapter B.2 --- Subroutines in 'Core.f' --- p.A-9 / Chapter B.3 --- Subroutines in 'initiaLf' --- p.A-13 / Chapter B.4 --- Subroutines in ´بmisc.f' --- p.A-14 / Chapter C. --- List of Figures --- p.A-17 / Chapter D. --- List of Tables --- p.A-22 / Chapter E. --- List of Abbreviations and Acronyms --- p.A-23 / Chapter F. --- List of Symbols --- p.A-24 / Chapter G. --- List of Publications --- p.A-27 / Index --- p.I-1

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_318328
Date January 1995
ContributorsLiew, So-kuen C., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, vii, 165, [47] leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0018 seconds