Return to search

Modeling flow encountering abrupt topography using hybridizable discontinuous Galerkin projection methods

Thesis: S.M., Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2017. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 85-89). / In this work novel high-order hybridizable discontinuous Galerkin (HDG) projection methods are further developed for ocean dynamics and geophysical fluid predictions. We investigate the effects of the HDG stabilization parameter for both the momentum equation as well as tracer diffusion. We also make a correction to our singularity treatment algorithm for nailing down a numerically consistent and unique solution to the pressure Poisson equation with homogeneous Neumann boundary conditions everywhere along the boundary. Extensive numerical results using physically realistic ocean flows are presented to verify the HDG projection methods, including the formation of internal wave beams over a shallow but abrupt seamount, the generation of internal solitary waves from stratified oscillatory flow over steep topography, and the circulation of bottom gravity currents down a slope. Additionally, we investigate the implementation of open boundary conditions for finite element methods and present results in the context of our ocean simulations. Through this work we present the hybridizable discontinuous Galerkin projection methods as a viable and competitive alternative for large-scale, realistic ocean modeling. / by Johnathan Hiep Vo. / S.M.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/113970
Date January 2017
CreatorsVo, Johnathan Hiep
ContributorsPierre F.J. Lermusiaux., Massachusetts Institute of Technology. Computation for Design and Optimization Program., Massachusetts Institute of Technology. Computation for Design and Optimization Program.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format89 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0014 seconds