Return to search

An investigation of the perfectly matched layer for inhomogeneous media / Investigation of the PML for inhomogeneous media

Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2008. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Includes bibliographical references (p. 41-45). / Although perfectly matched layers (PMLs) have been widely used to truncate numerical simulations of electromagnetism and other wave equations, we point out important cases in which a PML fails to be reflectionless even in the limit of infinite resolution. In particular, the underlying coordinate-stretching idea behind PML breaks down in photonic crystals and in other structures where the material is not an analytic function in the direction perpendicular to the boundary, leading to substantial reflections. The alternative is an adiabatic absorber, in which reflections are made negligible by gradually increasing the material absorption at the boundaries, similar to a common strategy to combat discretization reflections in PMLs. We demonstrate the fundamental connection between such reflections and the smoothness of the absorption profile via coupled-mode theory, and show how to obtain higher-order and even exponential vanishing of the reflection with absorber thickness. / by Ardavan F. Oskooi. / S.M.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/43738
Date January 2008
CreatorsOskooi, Ardavan F
ContributorsSteven G. Johnson., Massachusetts Institute of Technology. Computation for Design and Optimization Program., Massachusetts Institute of Technology. Computation for Design and Optimization Program.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format45 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0081 seconds