Return to search

Methods and applications in computational protein design

Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2010. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (p. 107-111). / In this thesis, we summarize our work on applications and methods for computational protein design. First, we apply computational protein design to address the problem of degradation in stored proteins. Specifically, we target cysteine, asparagine, glutamine, and methionine amino acid residues to reduce or eliminate a protein's susceptibility to degradation via aggregation, deamidation, and oxidation. We demonstrate this technique on a subset of degradation-prone amino acids in phosphotriesterase, an enzyme that hydrolyzes toxic organophosphates including pesticides and chemical warfare agents. Second, we introduce BroMAP/A*, an exhaustive branch-and- bound search technique with enumeration. We compare performance of BroMAP/A* to DEE/A*, the current standard for conformational search with enumeration in the protein design community. When limited computational resources are available, DEE/A* sometimes fails to find the global minimum energy conformation and/or enumerate the lowest-energy conformations for large designs. Given the same computational resources, we show how BroMAP/A* is able to solve large designs by efficiently dividing the search space into small, solvable subproblems. / by Jason Charles Biddle. / S.M.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/61792
Date January 2010
CreatorsBiddle, Jason Charles
ContributorsBruce Tidor., Massachusetts Institute of Technology. Computation for Design and Optimization Program., Massachusetts Institute of Technology. Computation for Design and Optimization Program.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format111 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0023 seconds