Return to search

Optimization of ship-pack in a two-echelon distribution system

Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 61-62). / The traditional Economic Order Quantity (EOQ) model ignores the physical limitations of distribution practices. Very often distribution centers (DC) have to deliver merchandise in manufacturer-specified packages, which can impose restrictions on the application of the economic order quantity. These manufacturer-specified packages, or ship-packs, include cases (e.g., cartons containing 24 or 48 units), inners (packages of 6 or 8 units) and eaches (individual units). For each Stock Keeping Unit (SKU), a retailer decides which of these ship-pack options to use when replenishing its retail stores. Working with a major US retailer, we have developed a cost model to help determine the optimum warehouse ship-pack. Besides recommending the most economical ship-pack, the model is also capable of identifying candidates for warehouse dual-slotting, i.e., two picking modules for the same SKU that carry two different pack sizes. We find that SKUs whose sales volumes vary greatly over time will benefit more from dual-slotting. Finally, we extend our model to investigate the ideal case configuration for a particular SKU, that is, the ideal size for an inner package. / by Naijun Wen. / S.M.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/61903
Date January 2010
CreatorsWen, Naijun
ContributorsStephen C. Graves., Massachusetts Institute of Technology. Computation for Design and Optimization Program., Massachusetts Institute of Technology. Computation for Design and Optimization Program.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format62 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0023 seconds