Return to search

A preconditioned Newton-Krylov method for computing steady-state pulse solutions of mode-locked lasers

Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2008. / Includes bibliographical references (p. 47-48). / We solve the periodic boundary value problem for a mode-locked laser cavity using a specially preconditioned matrix-implicit Newton-Krylov solver. Solutions are obtained at least an order of magnitude faster than with dynamic simulation, the standard method. Our method is demonstrated experimentally on a one-dimensional temporal model of an eight femtosecond mode-locked laser operating in the dispersion-managed soliton regime. Our solver is applicable to finding the steady-state solution of any nonlinear optical cavity with moderate self phase modulation, such as those of solid state lasers, and requires only a model for the round-trip action of the cavity. We conclude by proposing avenues of future work to improve the method's convergence and expand its applicability to lasers with higher degrees of cavity nonlinearity. Our approach can be extended to spatio-temporal cavity models, potentially allowing for the first feasible simulation of the full dynamics of Kerr-lens mode locking. / by Jonathan R. Birge. / S.M.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/42454
Date January 2008
CreatorsBirge, Jonathan R. (Jonathan Richards)
ContributorsJacob K. White., Massachusetts Institute of Technology. Computation for Design and Optimization Program., Massachusetts Institute of Technology. Computation for Design and Optimization Program.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format55 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0113 seconds