Return to search

Design Principle on Carbon Nanomaterials Electrocatalysts for Energy Storage and Conversion

We are facing an energy crisis because of the limitation of the fossil fuel and the pollution caused by burning it. Clean energy technologies, such as fuel cells and metal-air batteries, are studied extensively because of this high efficiency and less pollution. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential in the process of energy storage and conversion, and noble metals (e.g. Pt) are needed to catalyze the critical chemical reactions in these devices. Functionalized carbon nanomaterials such as heteroatom-doped and molecule-adsorbed graphene can be used as metal-free catalysts to replace the expensive and scarce platinum-based catalysts for the energy storage and conversion. Traditionally, experimental studies on the catalytic performance of carbon nanomaterials have been conducted extensively, however, there is a lack of computational studies to guide the experiments for rapid search for the best catalysts. In addition, theoretical mechanism and the rational design principle towards ORR and OER also need to be fully understood.
In this dissertation, density functional theory calculations are performed to calculate the thermodynamic and electrochemical properties of heteroatom-doped graphene and molecule-adsorbed graphene for ORR and OER. Gibb's free energy, overpotential, charge transfer and edge effect are evaluated. The charge transfer analysis show the positive charges on the graphene surface caused by the heteroatom, hetero-edges and the adsorbed organic molecules play an essential role in improving the electrochemical properties of the carbon nanomaterials. Based on the calculations, design principles are introduced to rationally design and predict the electrochemical properties of doped graphene and molecule-adsorbed graphene as metal-free catalysts for ORR and OER. An intrinsic descriptor is discovered for the first time, which can be used as a materials parameter for rational design of the metal-free catalysts with carbon nanomaterials for energy storage and conversion. The success of the design principle provides a better understanding of the mechanism behind ORR and OER and a screening approach for the best catalyst for energy storage and conversion.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc984279
Date05 1900
CreatorsZhao, Zhenghang
ContributorsXia, Zhenhai, 1963-, Choi, Wonbong, 1963-, Du, Jincheng, Reidy, Richard F., 1960-, Mukherjee, S. (Sundeep)
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatxiv, 134 pages, Text
RightsPublic, Zhao, Zhenghang, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0024 seconds