Return to search

Leannet : uma arquitetura que utiliza o contexto da cena para melhorar o reconhecimento de objetos

Submitted by PPG Ci?ncia da Computa??o (ppgcc@pucrs.br) on 2018-06-15T16:40:47Z
No. of bitstreams: 1
LEANDRO PEREIRA DA SILVA_DIS.pdf: 16008947 bytes, checksum: 327a925ea56fcca0a86530a0eb3b1637 (MD5) / Approved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-06-26T13:25:28Z (GMT) No. of bitstreams: 1
LEANDRO PEREIRA DA SILVA_DIS.pdf: 16008947 bytes, checksum: 327a925ea56fcca0a86530a0eb3b1637 (MD5) / Made available in DSpace on 2018-06-26T13:34:22Z (GMT). No. of bitstreams: 1
LEANDRO PEREIRA DA SILVA_DIS.pdf: 16008947 bytes, checksum: 327a925ea56fcca0a86530a0eb3b1637 (MD5)
Previous issue date: 2018-03-27 / Computer vision is the science that aims to give computers the capability of see- ing the world around them. Among its tasks, object recognition intends to classify objects and to identify where each object is in a given image. As objects tend to occur in particular environments, their contextual association can be useful to improve the object recognition task. To address the contextual awareness on object recognition task, the proposed ap- proach performs the identification of the scene context separately from the identification of the object, fusing both information in order to improve the object detection. In order to do so, we propose a novel architecture composed of two convolutional neural networks running in parallel: one for object identification and the other to the identification of the context where the object is located. Finally, the information of the two-streams architecture is concatenated to perform the object classification. The evaluation is performed using PASCAL VOC 2007 and MS COCO public datasets, by comparing the performance of our proposed approach with architectures that do not use the scene context to perform the classification of the ob- jects. Results show that our approach is able to raise in-context object scores, and reduces out-of-context objects scores. / A vis?o computacional ? a ci?ncia que permite fornecer aos computadores a ca- pacidade de verem o mundo em sua volta. Entre as tarefas, o reconhecimento de objetos pretende classificar objetos e identificar a posi??o onde cada objeto est? em uma imagem. Como objetos costumam ocorrer em ambientes particulares, a utiliza??o de seus contex- tos pode ser vantajosa para melhorar a tarefa de reconhecimento de objetos. Para utilizar o contexto na tarefa de reconhecimento de objetos, a abordagem proposta realiza a iden- tifica??o do contexto da cena separadamente da identifica??o do objeto, fundindo ambas informa??es para a melhora da detec??o do objeto. Para tanto, propomos uma nova arquite- tura composta de duas redes neurais convolucionais em paralelo: uma para a identifica??o do objeto e outra para a identifica??o do contexto no qual o objeto est? inserido. Por fim, a informa??o de ambas as redes ? concatenada para realizar a classifica??o do objeto. Ava- liamos a arquitetura proposta com os datasets p?blicos PASCAL VOC 2007 e o MS COCO, comparando o desempenho da abordagem proposta com abordagens que n?o utilizam o contexto. Os resultados mostram que nossa abordagem ? capaz de aumentar a probabili- dade de classifica??o para objetos que est?o em contexto e reduzir para objetos que est?o fora de contexto.

Identiferoai:union.ndltd.org:IBICT/oai:tede2.pucrs.br:tede/8168
Date27 March 2018
CreatorsSilva, Leandro Pereira da
ContributorsRuiz, Duncan Dubugras Alcoba
PublisherPontif?cia Universidade Cat?lica do Rio Grande do Sul, Programa de P?s-Gradua??o em Ci?ncia da Computa??o, PUCRS, Brasil, Escola Polit?cnica
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da PUC_RS, instname:Pontifícia Universidade Católica do Rio Grande do Sul, instacron:PUC_RS
Rightsinfo:eu-repo/semantics/openAccess
Relation1974996533081274470, 500, 500, -862078257083325301

Page generated in 0.0049 seconds