Made available in DSpace on 2014-12-17T14:56:01Z (GMT). No. of bitstreams: 1
ClauberGB.pdf: 726956 bytes, checksum: d3fb1b2d7c6ad784a1b7d40c1a54f8f8 (MD5)
Previous issue date: 2004-03-08 / Several methods of mobile robot navigation request the mensuration of robot position and orientation in its workspace. In the wheeled mobile robot case, techniques based on odometry allow to determine the robot localization by the integration of incremental displacements of its wheels. However, this technique is subject to errors that accumulate with the distance traveled by the robot, making unfeasible its exclusive use. Other methods are based on the detection of natural or artificial landmarks present in the environment and whose location is known. This technique doesnt generate cumulative errors, but it can request a larger processing time than the methods based on odometry. Thus, many methods make use of both techniques, in such a way that the odometry errors are periodically corrected through mensurations obtained from landmarks. Accordding to this approach, this work proposes a hybrid localization system for wheeled mobile robots in indoor environments based on odometry and natural landmarks. The landmarks are straight lines de.ned by the junctions in environments floor, forming a bi-dimensional grid. The landmark detection from digital images is perfomed through the Hough transform. Heuristics are associated with that transform to allow its application in real time. To reduce the search time of landmarks, we propose to map odometry errors in an area of the captured image that possesses high probability of containing the sought mark / Diversos m?todos de navega??o de rob?s m?veis requerem a medi??o da posi??o e orienta??o do rob? no seu espa?o de trabalho. No caso de rob?s m?veis com rodas, t?cnicas baseadas em odometria permitem determinar a localiza??o do rob? atrav?s da integra??o de medi??es dos deslocamentos incrementais de suas rodas. No entanto, essa t?cnica est? sujeita a erros que se acumulam com a dist?ncia percorrida pelo rob?, o que inviabiliza o seu uso exclusivo. Outros m?todos se baseiam na detec??o de marcos naturais ou artificiais, cuja localiza??o ? conhecida, presentes no ambiente. Apesar desta t?cnica n?o gerar erros cumulativos, ela pode requisitar um tempo de processamento bem maior do que o uso de odometria. Assim, muitos m?todos fazem uso de ambas as t?cnicas, de modo a corrigir periodicamente os erros de odometria, atrav?s de medi??es obtidas a partir dos marcos. De acordo com esta abordagem, propomos neste trabalho um sistema h?brido de localiza??o para rob?s m?veis com rodas em ambientes internos, baseado em odometria e marcos naturais, onde os marcos adotados s?o linhas retas definidas pelas jun??es existentes no piso do ambiente, formando uma grade bi-dimensional no ch?o. Para a detec??o deste tipo de marco, a partir de imagens digitais, ? utilizada a transformada de Hough, associada a heur?sticas que permitem a sua aplica??o em tempo real. Em particular, para reduzir o tempo de busca dos marcos, propomos mapear erros de odometria em uma regi?o da imagem capturada que possua grande probabilidade de conter o marco procurado
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/15411 |
Date | 08 March 2004 |
Creators | Bezerra, Clauber Gomes |
Contributors | CPF:42487455420, http://lattes.cnpq.br/3653597363789712, D?ria Neto, Adri?o Duarte, CPF:10749896434, http://lattes.cnpq.br/1987295209521433, Medeiros, Adelardo Adelino Dantas de, Alsina, Pablo Javier |
Publisher | Universidade Federal do Rio Grande do Norte, Programa de P?s-Gradua??o em Engenharia El?trica, UFRN, BR, Automa??o e Sistemas; Engenharia de Computa??o; Telecomunica??es |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds