The prolonged challenges and dire consequences of poor sanitation, especially in developing economies, call for the exploration of new sustainable technologies. These need to be: capable of effectively treating human faecal wastes without any health or environmental impacts; scalable to address rapid increases in population and urbanization; capable of meeting environmental regulations and standards for faecal management; and competitive with existing strategies. Further and importantly, despite its noxiousness and pathogenic load, the chemical composition of human biowaste (HBW) indicates that it may be considered to be a potentially valuable, nutrient-rich renewable resource, rather than a problematic waste product. This doctoral study therefore investigated microwave hydrothermal carbonization (M-HTC) as a sanitation technology for processing HBW - to convert it into a safe, pathogen-free material, while also recovering inherent value and providing an economic base to sustain the technology. To this end, the products of M-HTC treatment of sewage sludge, human faecal sludge, synthetic faecal simulant and human faeces were characterized with a suite of techniques and tests to demonstrate pathogenic deactivation, and the intrinsic value of the resultant solid char and liquor.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:763427 |
Date | January 2015 |
Creators | Afolabi, Oluwasola O. D. |
Publisher | Loughborough University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://dspace.lboro.ac.uk/2134/19593 |
Page generated in 0.0017 seconds