Return to search

THE ROLE OF FOXM1 IN GROWTH FACTOR-MEDIATED PANCREATIC BETA-CELL PROLIFERATION

THE ROLE OF FOXM1 IN GROWTH FACTOR-MEDIATED PANCREATIC BETA-CELL PROLIFERATION
JIA ZHANG
Dissertation under the direction of Professor Maureen A. Gannon
Both type I and type II diabetes are due to an either absolute or relative loss of â-cell mass. A thorough understanding of â-cell mass regulation is needed for treatment of diabetes by restoring â-cell mass and glucose homeostasis. In adults, â-cell mass is replenished mainly through â-cell proliferation. Growth factors such as placental lactogen (PL), insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF) are potent â-cell mitogens. However, little is known about the intrinsic factors within a â-cell that mediate the mitogenic effects of growth factors. In searching for those intrinsic factors, previous studies from our laboratory have demonstrated that Foxm1, a pro-proliferation transcription factor, is required for the maintenance and expansion of adult â-cell mass under basal conditions and in injury models. This dissertation examined the hypothesis that Foxm1 plays a central role downstream of one or multiple growth factors to stimulate â-cell proliferation. The pregnancy hormone PL is mainly responsible for increased â-cell proliferation in pregnancy. We found that Foxm1 was up-regulated in maternal islets during pregnancy and PL induced Foxm1 expression in cultured islets. Additionally, Foxm1 was required for PL-mediated â-cell proliferation in vivo. Our preliminary data further identified Foxm1 as a novel direct target of the transcription factor Stat5, a downstream effector of PL signaling. To determine whether Foxm1 is essential for increases in â-cell proliferation and mass during pregnancy, we evaluated female mice with a pancreas-wide Foxm1 inactivation (Foxm1Äpanc). These mice developed gestational diabetes. Compared to controls, Foxm1Äpanc mice exhibited blunted â-cell proliferation and mass in response to pregnancy, which is likely due to the elevated islet expression or activity of two cell cycle inhibitors, Menin and p27. Foxm1-mediated â-cell proliferation is thus crucial for â-cell mass expansion and glucose homeostasis during pregnancy.
Our ongoing endeavors include examining whether Foxm1 is required for HGF and IGF-1-stimulated â-cell proliferation. In conclusion, the central role of Foxm1 in â-cell maintenance and growth factor stimulated-growth makes it a promising therapeutic candidate for enhancing â-cell mass in vivo.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-03312010-163151
Date17 May 2010
CreatorsZhang, Jia
ContributorsDavid M. Miller, Maureen A. Gannon, Stacey S. Huppert, Patricia A. Labosky, Anna L. Means
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu//available/etd-03312010-163151/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0156 seconds