Return to search

Building a Bigger Brain: Centriole Control of Cerebral Cortical Development

Human genetics has identified essential roles for many centriole- and cilia-related proteins during human development. Mutations in centrosome-associated genes commonly cause microcephaly, or "small brain," and mutations in cilia-associated genes cause a diverse spectrum of diseases termed "ciliopathies." However, the functional relationships between these two crucial organelles are less well studied.
The activities of centrosome-related proteins during mitosis and cytoskeletal remodeling are well-characterized, but their in vivo functions are incompletely understood. Here, we identify novel human mutations in a centrosomal gene which encodes a regulatory subunit of a microtubule interacting protein, and uncover unexpected pathways during vertebrate development. Human mutations cause severe microlissencephaly, reflecting defects in cerebral cortical neurogenesis, and loss of function in mice and zebrafish confirm essential roles in embryonic development, neurogenesis, and cell survival. Surprisingly, null mutant embryos display hallmarks of aberrant Sonic hedgehog signaling, including holoprosencephaly. Deficient induced pluripotent stem cells and lymphoblasts show defective proliferation and spindle structure, while deficient fibroblasts also demonstrate a remarkable excess of centrioles, including excessive maternal centrioles, with supernumerary cilia but deficient Hedgehog signaling. Our results reveal novel roles for this protein in regulating overall centriole number, mother centriole and cilia number, and as an essential gene for normal Hedgehog signaling during neocortical development.

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/13070046
Date January 2014
CreatorsHu, Wen Fan
ContributorsWalsh, Christopher A
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsclosed access

Page generated in 0.0019 seconds