Return to search

THE EFFECT OF POST-TRANSLATIONAL MODIFICATIONS ON XLEFTY FUNCTION

The Nodal and Nodal-related morphogens are utilized for the specification of distinct cellular identity throughout development by activating discrete target genes in a concentration-dependant manner. Lefty is the principal extracellular antagonist involved in the spatiotemporal regulation of the Nodal morphogen gradient during mesendoderm induction. The Xenopus Lefty proprotein contains a single N-linked glycosylation motif in the mature domain and two potential cleavage sites that would be expected to produce long (XleftyL) and short (XleftyS) ligand isoforms. Here I demonstrate that both isoforms were secreted from Xenopus oocytes, but that XleftyL is the only isoform detected when embryonic tissues were analyzed. In mesoderm induction assays, XleftyL is the functional blocker of Xnr signaling. When secreted from oocytes, vertebrate Lefty molecules were N-linked glycosylated. However, glycan addition was not required to inhibit Xnr signaling and did not influence its movement through the extracellular space. These findings demonstrate that Lefty molecules undergo post-translational modifications and that some of these modifications are required for the Nodal inhibitory function.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-11262007-164349
Date28 November 2007
CreatorsWestmoreland, Joby Jackson
ContributorsDavid Bader, Christopher V. E. Wright, Jin Chen, Chin Chiang
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-11262007-164349/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0433 seconds