Return to search

The Regulation and Essential Functions of Matrix Metalloproteinases during Wound Healing

Wound healing, an essential function to the survival of all multicellular organisms, requires the precise orchestration of multiple cell types in order to repair the damaged tissue. Wound healing involves three overlapping phases: inflammation, re-epithelialization, and scar formation. Matrix metalloproteinases (MMPs) are endopeptidases of the metzincin family, which have been shown to function throughout wound healing, but their precise functions and regulatory mechanisms are unclear <em>in vivo</em> largely due to the complications of redundancy. In mammals there are 24 MMPs (seventeen secreted type MMPs and seven membrane-anchored type MMPs). MMPs are inhibited by Tissue Inhibitors of Metalloproteinases (TIMP), of which there are four in mammals. To bypass the complications of redundancy, we utilized <em>Drosophila melanogaster</em> as a model system to study MMPs <em>in vivo</em> during wound healing. <em>Drosophila</em> serve as a simple system to not only study wound healing, but the <em>Drosophila</em> genome encodes only two MMPs, one secreted (<em>Mmp1</em>) and one membrane-anchored (<em>Mmp2</em>), providing a system to elucidate the functions of each MMP class <em>in vivo</em>. Our results indicate that <em>Mmp1</em> and <em>Mmp2</em>, as well as the inhibitor, <em>Timp</em> are required for re-epithelialization, where they may function together to promote cell migration. During re-epithelialization, <em>Mmp1</em>, under the control of the JNK signaling pathway, functions to promote cell migration by facilitating collagen IV remodeling, promoting actin cytoskeleton reorganization, and inducing RTK signaling. <em>Mmp1</em> from the hemocytes may function to limit the area of both JNK and RTK signaling to the immediate vicinity of the wound. Preliminary results suggest that <em>Mmp1</em> and <em>Mmp2</em> may regulate hemostasis and the melanization cascade, as we observe both clotting and melanization defects in <em>Mmp1</em> and <em>Mmp2</em> mutants. In unwounded tissue, both <em>Mmp1</em> and <em>Timp</em> are required for basement membrane maintenance, a function they do not share with <em>Mmp2</em>. The combination of both shared and independent phenotypes between <em>Mmp1</em>, <em>Mmp2</em>, and <em>Timp</em> mutants suggest that Mmp1, Mmp2, and Timp may form a complex to promote wound healing; however, if such a complex does form in vivo it is context-specific.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-03132012-101745
Date15 March 2012
CreatorsStevens, Laura Jeanette
ContributorsDavid Miller, Andrea Page-McCaw, Laura Lee, Jason Jesson, Jeff Davidson
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-03132012-101745/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0021 seconds