La robotique développementale a entrepris, au courant des quinze dernières années,d’étudier les processus développementaux, similaires à ceux des systèmes biologiques,chez les robots. Le but est de créer des robots qui ont une enfance—qui rampent avant d’essayer de courir, qui jouent avant de travailler—et qui basent leurs décisions sur l’expérience de toute une vie, incarnés dans le monde réel.Dans ce contexte, cette thèse étudie l’exploration sensorimotrice—la découverte pour un robot de son propre corps et de son environnement proche—pendant les premiers stage du développement, lorsque qu’aucune expérience préalable du monde n’est disponible. Plus spécifiquement, cette thèse se penche sur comment générer une diversité d’effets dans un environnement inconnu. Cette approche se distingue par son absence de fonction de récompense ou de fitness définie par un expert, la rendant particulièrement apte à être intégrée sur des robots auto-suffisants.Dans une première partie, l’approche est motivée et le problème de l’exploration est formalisé, avec la définition de mesures quantitatives pour évaluer le comportement des algorithmes et d’un cadre architectural pour la création de ces derniers. Via l’examen détaillé de l’exemple d’un bras robot à multiple degrés de liberté, la thèse explore quelques unes des problématiques fondamentales que l’exploration sensorimotrice pose, comme la haute dimensionnalité et la redondance sensorimotrice. Cela est fait en particulier via la comparaison entre deux stratégies d’exploration: le babillage moteur et le babillage dirigé par les objectifs. Plusieurs algorithmes sont proposés tour à tour et leur comportement est évalué empiriquement, étudiant les interactions qui naissent avec les contraintes développementales, les démonstrations externes et les synergies motrices. De plus, parce que même des algorithmes efficaces peuvent se révéler terriblement inefficaces lorsque leurs capacités d’apprentissage ne sont pas adaptés aux caractéristiques de leur environnement, une architecture est proposée qui peut dynamiquement choisir la stratégie d’exploration la plus adaptée parmi un ensemble de stratégies. Mais même avec de bons algorithmes, l’exploration sensorimotrice reste une entreprise coûteuse—un problème important, étant donné que les robots font face à des contraintes fortes sur la quantité de données qu’ils peuvent extraire de leur environnement;chaque observation prenant un temps non-négligeable à récupérer. [...] À travers cette thèse, les contributions les plus importantes sont les descriptions algorithmiques et les résultats expérimentaux. De manière à permettre la reproduction et la réexamination sans contrainte de tous les résultats, l’ensemble du code est mis à disposition. L’exploration sensorimotrice est un mécanisme fondamental du développement des systèmes biologiques. La séparer délibérément des mécanismes d’apprentissage et l’étudier pour elle-même dans cette thèse permet d’éclairer des problèmes importants que les robots se développant seuls seront amenés à affronter. / Developmental robotics has begun in the last fifteen years to study robots that havea childhood—crawling before trying to run, playing before being useful—and that are basing their decisions upon a lifelong and embodied experience of the real-world. In this context, this thesis studies sensorimotor exploration—the discovery of a robot’s own body and proximal environment—during the early developmental stages, when no prior experience of the world is available. Specifically, we investigate how to generate a diversity of effects in an unknown environment. This approach distinguishes itself by its lack of user-defined reward or fitness function, making it especially suited for integration in self-sufficient platforms. In a first part, we motivate our approach, formalize the exploration problem, define quantitative measures to assess performance, and propose an architectural framework to devise algorithms. through the extensive examination of a multi-joint arm example, we explore some of the fundamental challenges that sensorimotor exploration faces, such as high-dimensionality and sensorimotor redundancy, in particular through a comparison between motor and goal babbling exploration strategies. We propose several algorithms and empirically study their behaviour, investigating the interactions with developmental constraints, external demonstrations and biologicallyinspired motor synergies. Furthermore, because even efficient algorithms can provide disastrous performance when their learning abilities do not align with the environment’s characteristics, we propose an architecture that can dynamically discriminate among a set of exploration strategies. Even with good algorithms, sensorimotor exploration is still an expensive proposition— a problem since robots inherently face constraints on the amount of data they are able to gather; each observation takes a non-negligible time to collect. [...] Throughout this thesis, our core contributions are algorithms description and empirical results. In order to allow unrestricted examination and reproduction of all our results, the entire code is made available. Sensorimotor exploration is a fundamental developmental mechanism of biological systems. By decoupling it from learning and studying it in its own right in this thesis, we engage in an approach that casts light on important problems facing robots developing on their own.
Identifer | oai:union.ndltd.org:theses.fr/2015BORD0072 |
Date | 18 May 2015 |
Creators | Benureau, Fabien |
Contributors | Bordeaux, Oudeyer, Pierre-Yves |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds