Seja $\\Sigma_(\\mathbb)$ um shift enumerável topologicamente mixing com a propriedade BIP sobre o alfabeto $\\mathbb$, $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ um potencial com variação somável e pressão topológica finita. Sob hipóteses adequadas provamos a existência de um princípio dos grandes desvios para a familia de estados de Gibbs $(\\mu_{\\beta})_{\\beta > 0}$, onde cada $\\mu_{\\beta}$ é a medida de Gibbs associada ao potencial $\\beta f$. Para fazer isso generalizamos alguns teoremas de Otimização Ergódica para shifts de Markov enumeráveis. Esse resultado generaliza o mesmo princípio no caso de um subshift topologicamente mixing sobre um alfabeto finito, previamente provado por A. Baraviera, A. Lopes e P. Thieullen. / Let $\\Sigma_(\\mathbb)$ be a topologically mixing countable Markov shift with the BIP property over the alphabet $\\mathbb$ and a potential $f: \\Sigma_(\\mathbb) ightarrow \\mathbb$ with summable variation and finite pressure. Under suitable hypotheses, we prove the existence of a large deviation principle for the family of Gibbs states $(\\mu_{\\beta})_{\\beta > 0}$ where each $\\mu_{\\beta}$ is the Gibbs measure associated to the potential $\\beta f$. For do this we generalize some theorems from finite to countable Markov shifts in Ergodic Optimization. This result generalizes the same principle in the case of topologically mixing subshifts over a finite alphabet previously proved by A. Baraviera, A. Lopes and P. Thieullen.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-24062015-121640 |
Date | 13 March 2015 |
Creators | Edgardo Enrique Perez Reyes |
Contributors | Rodrigo Bissacot Proença, Renaud Daniel Jacques Leplaideur, Albert Meads Fisher, Ricardo dos Santos Freire Junior, Artur Oscar Lopes, Ali Messaoudi |
Publisher | Universidade de São Paulo, Matemática Aplicada, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0708 seconds