Yes / This study aims to evaluate the impacts of using thermally enhanced concrete on the thermal performance of geoenergy
structures and interaction between the thermo-active-structures and adjacent dry and partly saturated
soils. Experiments using a fully instrumented testing rig were carried out on prototypes of energy pile and
diaphragm wall made from normal concrete and thermally enhanced concrete by the addition of graphTHERM
powder. Results illustrated that adding 36% of graphTHERM powder to the concrete by weight of cement was
found to double the thermal conductivity of concrete and improve the stiffness by 15% without detrimental
effects on the compressive strength. The heat transfer efficiency of energy pile and energy diaphragm wall made
from thermally enhanced concrete was significantly improved by 50% and 66% respectively, in comparison with
the efficiency of the same type of energy structure that was made from a typical normal concrete.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/18799 |
Date | 21 March 2022 |
Creators | Elkezza, O., Mohamed, Mostafa H.A., Khan, Amir |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, Accepted manuscript |
Rights | © 2021 Elsevier Ltd. All rights reserved. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license., CC-BY-NC-ND |
Page generated in 0.0028 seconds