In this thesis a technique that is being used in another area of technology to optimize light reception in a photographic camera was also applied to the dielectric resonator antenna. The technique consisting of the use of thin film to couple the media and camera impedances resulted in a dielectric resonator antenna bandwidth enhancement technique. The bandwidth enhancement technique was found when thin film dielectric layer structure was used to couple the dielectric resonator and its feed mechanism. Remarkable good performance was detected with a coplanar waveguide fed cylindrical dielectric resonator antenna which resulted in an improvement to its fractional bandwidth from 7.41% to 50.85%. Extensive experimental work was undertaken in order to explore the extent offered in bandwidth performance by using thin film dielectric layer structure in the dielectric resonator antenna performance. The experimental tasks were designed in order to investigate the influence of the thin film dielectric layer structure in relation to its size, shape, thickness, position and direction. Experimental results were supported with simulation work with the computer simulation technology microwave studio. The pieces of the material used for undertaking this experimental work were manually handcrafted. Four different dielectric resonator antenna designs were used in order to carry out the experimental work including the coplanar waveguide fed cylindrical dielectric resonator antenna. The other three dielectric resonator antennas were implemented using the same microstrip feed mechanism. Improved performance in bandwidth was achieved for all the designs. Optimization of the incoming signal was observed when a piece of thin film dielectric layer structure was placed in position between the feed mechanism and the dielectric resonator antenna. The optimization was observed as an enhancement in both the return loss level and the bandwidth of work. Different unexpected operational modes from were activated, such modes being called perturbed modes. Two different shapes were used in this project. Cylindrical dielectric resonator antenna (ɛr = 37) from a commercial provider and two novel rectangular dielectric resonator antennas. The novel rectangular dielectric resonator antennas were created with the methodology presented in this thesis. The rectangular dielectric resonator antennas were elaborated with transparent ceramic material (ɛr = 7) and TMM10i (ɛr = 9.8) from the Rogers Corporation company. The bandwidth enhancement technique was tested in novel embedded dielectric resonator antennas. A coplanar waveguide fed embedded cylindrical dielectric resonator antenna achieved a maximum bandwidth enhancement of 156.77% around f = 3.79 GHz with a thin film dielectric layer structure modified rectangular piece on one edge. Escalation to dielectric resonator antenna design at millimeter wave frequencies was achieved by using thin film dielectric layer structure bandwidth enhancement technique and a handcrafted printed circuit board millimeter wave feed mechanism. The millimeter wave feed mechanisms were achieved using a low cost alternative technique conceived as part of this project. Millimeter wave dielectric resonator antennas were implemented using thin film dielectric layers structure. The antennas deliver an adequate performance in bandwidth. The work presented in this thesis demonstrates dielectric resonator antenna simpler geometry, simple couple schemes, small size, low profile, light weight, and ease of excitation and orientation. Other parameters have also been investigated covering reduced complexity, high degree of flexibility, ease of fabrication and the use of low cost technology to escalate to millimeter wave frequencies.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:634974 |
Date | January 2015 |
Creators | Castillo Solis, Maria De los angeles |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.research.manchester.ac.uk/portal/en/theses/dielectric-resonator-antennas-and-bandwidth-enhancement-techniques(44b64ce4-dc73-496a-b656-dc4b9c910291).html |
Page generated in 0.0019 seconds