Return to search

Characterizing the Operation of a Dual-Fuel Diesel-Hydrogen Engine near the Knock Limit

A CAT C6.6 turbocharged diesel engine was operated in dual-fuel diesel-hydrogen mode. Hydrogen was inducted into the intake and replaced a portion of the diesel fuel. Hydrogen was added across multiple engine speeds and loads until reaching the knock limit, identified by a threshold on the rate of in-cylinder pressure rise. In-cylinder pressure and emissions data were recorded and compared to diesel-only operation. Up to 74% H2 substitution for diesel fuel was achieved. Hydrogen addition increased thermal efficiency up to 32.4%, increased peak in-cylinder pressure up to 40.0%, increased the maximum rate of pressure rise up to 281%, advanced injection timing up to 13.6°, increased NOx emissions up to 224%, and reduced CO2 emissions up to 47.6%. CO and HC emissions were not significantly affected during dual-fuel operation. At 25% load an operating condition was observed with low NOx and nearly 0 CO2 emissions, which however exhibited unstable combustion.

Identiferoai:union.ndltd.org:ndsu.edu/oai:library.ndsu.edu:10365/27572
Date January 2014
CreatorsKersting, Lee
PublisherNorth Dakota State University
Source SetsNorth Dakota State University
Detected LanguageEnglish
Typetext/thesis
Formatapplication/pdf
RightsNDSU Policy 190.6.2, https://www.ndsu.edu/fileadmin/policy/190.pdf

Page generated in 0.0018 seconds