Return to search

Dynamical Invariants And The Fluid Impulse In Plasma Models

Much progress has been made in understanding of plasmas through the use of the MHD equations and newer models such as Hall MHD and electron MHD. As with most equations of fluid behavior, these equations are nonlinear, and no general solutions can be found. The use of invariant structures allows limited predictions of fluid behavior without requiring a full solution of the underlying equations. The use of gauge transformation can allow the creation of new invariants, while differential geometry offers useful tools for constructing additional invariants from those that are already known. Using these techniques, new geometric, integral and topological invariants are constructed for Hall and electron MHD models. Both compressible and incompressible models are considered, where applicable. An application of topological invariants to magnetic reconnection is provided. Finally, a particular geometric invariant, which can be interpreted as the fluid impulse density, is studied in greater detail, its nature and invariance in plasma models is demonstrated, and its behavior is predicted in particular geometries under different models.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-3954
Date01 January 2013
CreatorsMichalak, Martin
PublisherUniversity of Central Florida
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0015 seconds