Under consideration are two-point boundary value problems for a system of second order differential equations which contains a small parameter multiplying the highest dereivatives. We prove the existence of solutions exhibiting left and right boundary layers by constructing upper and lower solutions of the system. The behavior of the solutions as the parameter tends to zero is also established. Of special interest is the existence of a compound boundary layer (i.e., one involving two scales) at the left endpoint of the interval.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/281957 |
Date | January 1981 |
Creators | Smock, Richard Courtney |
Contributors | Fife, Paul |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Dissertation-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0019 seconds