This thesis presents a multi-grid scheme applied to the solution of transport equations in turbulent flow associated with heat transfer. The multi-grid scheme is then applied to flow which occurs in the film cooling of turbine blades. The governing equations are discretized on a staggered grid with the hybrid differencing scheme. The momentum and continuity equations are solved by a nonlinear full multi-grid scheme with the SIMPLE algorithm as a relaxation smoother. The turbulence k — Є equations and the thermal energy equation are solved on each grid without multi-grid correction.
Observation shows that the multi-grid scheme has a faster convergence rate in solving the Navier-Stokes equations and that the rate is not sensitive to the number of mesh points or the Reynolds number. A significant acceleration of convergence is also produced for the k — Є and the thermal energy equations, even though the multi-grid correction is not applied to these equations. The multi-grid method provides a stable and efficient means for local mesh refinement with only little additional computational and.memory costs.
Driven cavity flows at high Reynolds numbers are computed on a number of fine meshes for both the multi-grid scheme and the local mesh-refinement scheme. Two-dimensional film cooling flow is studied using multi-grid processing and significant improvements
in the results are obtained. The non-uniformity of the flow at the slot exit and its influence on the film cooling are investigated with the fine grid resolution. A near-wall turbulence model is used. Film cooling results are presented for slot injection with different mass flow ratios. / Science, Faculty of / Mathematics, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/29414 |
Date | January 1990 |
Creators | Zhou, Jian Ming |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0021 seconds