Return to search

Differential privacy and machine learning: Calculating sensitivity with generated data sets / Differential privacy och maskininlärning: Beräkning av sensitivitet med genererade dataset

Privacy has never been more important to maintain in today’s information society. Companies and organizations collect large amounts of data about their users. This information is considered to be valuable due to its statistical usage that provide insight into certain areas such as medicine, economics, or behavioural patterns among individuals. A technique called differential privacy has been developed to ensure that the privacy of individuals are maintained. This enables the ability to create useful statistics while the privacy of the individual is maintained. However the disadvantage of differential privacy is the magnitude of the randomized noise applied to the data in order to hide the individual. This research examined whether it is possible to improve the usability of the privatized result by using machine learning to generate a data set that the noise can be based on. The purpose of the generated data set is to provide a local representation of the underlying data set that is safe to use when calculating the magnitude of the randomized noise. The results of this research has determined that this approach is currently not a feasible solution, but demonstrates possible ways to base further research in order to improve the usability of differential privacy. The research indicates limiting the noise to a lower bound calculated from the underlying data set might be enough to reach all privacy requirements. Furthermore, the accuracy of the machining learning algorithm and its impact on the usability of the noise, was not fully investigated and could be of interest in future studies. / Aldrig tidigare har integritet varit viktigare att upprätthålla än i dagens informationssamhälle, där företag och organisationer samlar stora mängder data om sina användare. Merparten av denna information är sedd som värdefull och kan användas för att skapa statistik som i sin tur kan ge insikt inom områden som medicin, ekonomi eller beteendemönster bland individer. För att säkerställa att en enskild individs integritet upprätthålls har en teknik som heter differential privacy utvecklats. Denna möjliggör framtagandet av användbar statistik samtidigt som individens integritet upprätthålls. Differential privacy har dock en nackdel, och det är storleken på det randomiserade bruset som används för att dölja individen i en fråga om data. Denna undersökning undersökte huruvida detta brus kunde förbättras genom att använda maskininlärning för att generera ett data set som bruset kunde baseras på. Tanken var att den genererade datasetet skulle kunna ge en lokal representation av det underliggande datasetet som skulle vara säker att använda vid beräkning av det randomiserade brusets storlek. Forskningen visar att detta tillvägagångssätt för närvarande inte stöds av resultaten. Storleken på det beräknade bruset var inte tillräckligt stort och resulterade därmed i en oacceptabel mängd läckt information. Forskningen visar emellertid att genom att begränsa bruset till en lägsta nivå som är beräknad från det lokala datasetet möjligtvis kan räcka för att uppfylla alla sekretesskrav. Ytterligare forskning behövs för att säkerställa att detta ger den nödvändiga nivån av integritet. Vidare undersöktes inte noggrannheten hos maskininlärningsalgoritmen och dess inverkan på brusets användbarhet vilket kan vara en inriktning för vidare studier.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-209481
Date January 2017
CreatorsLundmark, Magnus, Dahlman, Carl-Johan
PublisherKTH, Data- och elektroteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-STH ; 2017:36

Page generated in 0.0022 seconds