In this research we study the effect of adding a single diffraction grating on top of a solar cell. We simulated the square diffraction grating, as well as triangular diffraction grating. The single square grating showed more favorable results, achieved 330% power improvement compared to 270% power improvement in the single triangular grating case.
We simulated a triangle/triangle (top-bottom) and triangular/rectangular (top-bottom) grating cases. The Triangular grating achieved higher light absorption compared to rectangular grating. The best top grating was around 200nm grating period. We realized solar cell efficiency improvement about 42.4% for the triangular rectangular (top-bottom) grating.
We studied the light transmitted power in a silicon solar cell using double diffraction triangular nano-grating. We simulated the solar cell behavior as it absorbs sunlight through its structure in various cases, results showed 270% increase of the weighted transmitted power when the top grating period (At) varies from 300nm to 800nm, and the bottom grating period (Ab) is at 500nm.
We finally studied the effect of changing the location of the diffraction gratings with respect to the solar cell. We were able to increase the light efficiency by 120%. The study showed that the power absorbed by the solar cell is not sensitive to the grating location.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1713 |
Date | 01 December 2011 |
Creators | Ellaboudy, Ashton |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0024 seconds