Return to search

An Experimental Investigation of JP-7 and n-Heptane Extinction Limits in an Opposed Jet Burner

Propulsion engine combustor design and analysis require experimentally verified data on the chemical kinetics of limiting fuel combustion rates. Among the important data is the combustion extinction limit as measured by the maximum global strain rate on a laminar, counterflow, non-premixed flame. The extinction limit relates to the ability to maintain combustor operation, and the extinction limit data for pure fuel versus air systems provide a relative reactivity scale for use in the design of flame holders.

Extinction limit data were obtained for nine fuels by means of a laminar flame experiment using an opposed jet burner (OJB). The OJB consists of two axi-symmetric tubes (for fuel and oxidizer separately), which produce a flat, disk-like, counterflow diffusion flame. This paper presents results of experiments conducted in an OJB that measured extinction limits at one atmosphere for vaporized n-heptane, the Air Force-developed fuels JP-7, and JP-10, as well as methane, ethane, ethylene, propane, butane, and hydrogen.

In hypersonic aircraft development it is desirable to design a Scramjet engine that is operated on hydrocarbon fuel, particularly JP-7 due to its distinct properties. This study provides key data for JP-7, for which very limited information previously existed. The interest in n-heptane is twofold. First, it has undergone a significant amount of previous flame structure and extinction limit study. Second, n-heptane (C7H16) is a pure substance, and therefore does not vary in composition, as does JP-7, which is a variable mixture of several different hydrocarbons. These two facts allow a baseline to be established by comparing the new OJB results to those previously taken. Additionally, the existing data for n-heptane, for mixtures up to 26 mole percent in nitrogen, is extended to 100% n-heptane, reaching an asymptotic limit. Extinction limit data for the two fuels are given with a comparison to hydrogen and several other gaseous hydrocarbon fuels. Complete experimental results are included. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/35786
Date06 January 2006
CreatorsConvery, Janet Leigh
ContributorsMechanical Engineering, O'Brien, Walter F. Jr., Vandsburger, Uri, Pellett, Gerald L.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationJLC_thesis_FINAL_2.pdf

Page generated in 0.0028 seconds