Return to search

Method development for a tribological diffusion couple of rock and cemented carbide / Metodutveckling för ett tribologiskt diffusionspar av berg och hårdmetall

In a diffusion couple, the intimacy of the contact between the two parts is of high importance for the results. In a tribological contact, matter can transfer from one part to another and a very intimate contact is formed. A new method for investigating a tribological diffusion couple created in this way and consisting of rock and a cemented carbide (CC) drill bit button, is developed in this thesis. This is done as further studies of this couple can contribute to the understanding of drill bit wear in rock drilling. A complete experimental route, including sample preparation, tribological contact, heat treatment and analysis of samples, is presented. Heat treatment of samples was conducted both in an atmosphere of flowing argon and inside an evacuated and sealed quartz vacuum ampule. Heat treatment in flowing argon was rejected as an oxide formed on the sample surface.  Samples in quartz ampules were heat treated at either 1000 °C for 2 h or 21 h, or at 1100 °C for 2 h. Samples were repeatedly imaged with Scanning Electron Microscopy (SEM) and analysed with Energy Dispersive X-ray Spectroscopy (EDS) during the process. As Si and W have characteristic X-ray peaks in close proximity, the need for a detection method other than EDS to detect diffused Si in CC arose. Wavelength Dispersive X-ray Spectroscopy (WDS) performed well in that respect. Diffused Si could be found in the superficial Co pockets of the CC structure, by analysis with WDS.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-434847
Date January 2021
CreatorsFjällström, Alma
PublisherUppsala universitet, Tillämpad materialvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC K, 1650-8297 ; 21004

Page generated in 0.0023 seconds