Les systèmes décrits par les équations aux dérivées partielles, appartiennent à la classe des systèmes dynamiques impliquant des fonctions dépendantes de plusieurs variables, comme le temps et l'espace. Déjà fortement répandus pour la modélisation mathématique de phénomènes physiques et environnementaux, ces systèmes ont un rôle croissant dans les domaines de l'automatique. Cette expansion, provoquée par les avancées technologiques au niveau des capteurs facilitant l'acquisition de données et par les nouveaux enjeux environnementaux, incite au développement de nouvelles thématiques de recherche. L'une de ces thématiques, est l'étude des problèmes inverses et plus particulièrement l'identification paramétrique des équations aux dérivées partielles. Tout abord, une description détaillée des différentes classes de systèmes décrits par ces équations est présentée puis les problèmes d'identification qui leur sont associés sont soulevés. L'accent est mis sur l'estimation paramétrique des équations linéaires, homogènes ou non, et sur les équations linéaires à paramètres variant. Un point commun à ces problèmes d'identification réside dans le caractère bruité et échantillonné des mesures de la sortie. Pour ce faire, deux types d'outils principaux ont été élaborés. Certaines techniques de discrétisation spatio-temporelle ont été utilisées pour faire face au caractère échantillonné des données; les méthodes de variable instrumentale, pour traiter le problème lié à la présence de bruit de mesure. Les performances de ces méthodes ont été évaluées selon des protocoles de simulation numérique reproduisant des situations réalistes de phénomènes physique et environnementaux, comme la diffusion de polluant dans une rivière.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00913579 |
Date | 25 November 2013 |
Creators | Schorsch, Julien |
Publisher | Université de Lorraine |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0016 seconds