Return to search

Uopštena rešenja nekih klasa frakcionih parcijalnih diferencijalnih jednačina / Generalized Solutions for Some Classes of Fractional Partial Diferential Equations

<p>Doktorska disertacija je posvećena re&scaron;avanju Ko&scaron;ijevog problema odabranih klasa frakcionih diferencijalnih jednačina u okviru Kolomboovih prostora uop&scaron;tenih funkcija. U prvom delu disertacije razmatrane su nehomogene evolucione jednačine sa prostorno frakcionim diferencijalnim operatorima reda 0 &lt; &alpha; &lt; 2 i koeficijentima koji zavise od x i t. Ova klasa jednačina je aproksimativno re&scaron;avana, tako &scaron;to je umesto početne jednačine razmatrana aproksimativna jednačina data preko regularizovanih frakcionih izvoda, odnosno, njihovih regularizovanih množitelja. Za re&scaron;avanje smo koristili dobro poznate uop&scaron;tene uniformno neprekidne polugrupe operatora. U drugom delu disertacije aproksimativno su re&scaron;avane nehomogene frakcione evolucione jednačine sa Kaputovim<br />frakcionim izvodom reda 0 &lt; &alpha; &lt; 2, linearnim, zatvorenim i gusto definisanim<br />operatorom na prostoru Soboljeva celobrojnog reda i koeficijentima koji zavise<br />od x. Odgovarajuća aproksimativna jednačina sadrži uop&scaron;teni operator asociran sa polaznim operatorom, dok su re&scaron;enja dobijena primenom, za tu svrhu&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<br />u disertaciji konstruisanih, uop&scaron;tenih uniformno neprekidnih operatora re&scaron;enja.<br />U oba slučaja ispitivani su uslovi koji obezbeduju egzistenciju i jedinstvenost<br />re&scaron;enja Ko&scaron;ijevog problema na odgovarajućem Kolomboovom prostoru.</p> / <p>Colombeau spaces of generalized functions. In the firs part, we studied inhomogeneous evolution equations with space fractional differential operators of order 0 &lt; &alpha; &lt; 2 and variable coefficients depending on x and t. This class of equations is solved&nbsp; approximately, in such a way that instead of the originate equation we considered the corresponding approximate equation given by regularized fractional derivatives, i.e. their&nbsp; regularized multipliers. In the solving procedure we used a well-known generalized uniformly continuous semigroups of operators. In the second part, we solved approximately inhomogeneous fractional evolution equations with Caputo fractional derivative of order 0 &lt; &alpha; &lt; 2, linear, closed and densely defined operator in Sobolev space of integer order and variable coefficients depending on x. The corresponding approximate equation&nbsp;&nbsp; is a given by the generalized operator associated to the originate&nbsp; operator, while the solutions are obtained by using generalized uniformly continuous solution operators, introduced and developed for that purpose. In both cases, we provided the conditions that ensure the existence and uniqueness solutions of the Cauchy problem in some Colombeau spaces.</p>

Identiferoai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)102114
Date26 December 2016
CreatorsJapundžić Miloš
ContributorsRajter-Ćirić Danijela, Pilipović Stevan, Nedeljkov Marko, Atanacković Teodor
PublisherUniverzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, University of Novi Sad, Faculty of Sciences at Novi Sad
Source SetsUniversity of Novi Sad
LanguageSerbian
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0019 seconds