Structural brain networks can be constructed at a macroscopic scale using diffusion magnetic resonance imaging (dMRI) and whole-brain tractography. Under this approach, grey matter regions, such as Brodmann areas, form the nodes of a network and tractography is used to construct a set of white matter fibre tracts which form the connections. Graph-theoretic measures may then be used to characterise patterns of connectivity. In this study, we measured the test-retest properties of such networks by varying several factors affecting network construction using ten healthy volunteers who underwent a dMRI protocol at 1.5 T on two separate occasions. High resolution T1-weighted brains were parcellated into regions-of-interest and network connections were identified using dMRI and two alternative tractography algorithms, two alternative seeding strategies, constraints on anatomical plausibility and three alternative network weightings. Test-retest performance was found to improve when: 1) seeding from white matter, rather than grey; and 2) using probabilistic tractography, rather than deterministic. In terms of network weighting, a measure of streamline density produced better test-retest performance than tract-averaged diffusion anisotropy, although it remains unclear which is most representative of the underlying axonal connections. These findings were then used to inform network construction for two further cohorts: a casecontrol analysis of 30 patients with amyotrophic lateral sclerosis (ALS) compared with 30 age-matched healthy controls; and a cross-sectional analysis of 80 healthy volunteers aged 25– 64 years. In both cases, networks were constructed using a weighting reflecting tract-averaged fractional anisotropy (FA). A mass-univariate statistical technique called network-based statistics, identified an impaired motor-frontal-subcortical subnetwork (10 nodes and 12 bidirectional connections), consistent with upper motor neuron pathology, in the ALS group compared with the controls. Reduced FA for three of the impaired network connections, which involved fibres of the cortico-spinal tract, were significantly correlated with the rate of disease progression. Cross-sectional analysis of the 80 healthy volunteers was intended to provide supporting evidence for the widely reported age-related decline in white matter integrity. However, no meaningful relationships were found between increasing age and impaired connectivity based on global, lobar and nodal network properties – findings which were confirmed with a conventional voxel-based analysis of the dMRI data. In conclusion, whilst current acquisition protocols and methods can produce networks capable of characterising the genuine between-subject differences in connectivity, it is challenging to measure subtle white matter changes, for example, due to normal ageing. We conclude that future work should be undertaken to address these concerns.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:679458 |
Date | January 2015 |
Creators | Buchanan, Colin Richard |
Contributors | Bastin, Mark ; Storkey, Amos |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/14183 |
Page generated in 0.0021 seconds