Return to search

Accuracy Assessment Of The Dem And Orthoimage Generated From Aster

In this study, DEMs and orthoimages were generated from ASTER imagery and their accuracies were assessed. The study site covers an area of approximately 60 x 60 km and encloses the city of Ankara.

First, DEMs were generated from stereo ASTER images. In order to find the best GCP combination, different number of GCPs (8, 16, 24, and 32) was used. The accuracies of the generated DEMs were then assessed based on the check points (CP), slopes and land cover types. It was found that 16 GCPs were good compromise to produce the most accurate DEM. The post processing and blunder removal increased the overall accuracy up to 38%. It was also found that there is a strong linear relationship between the accuracies of DEMs and the slopes of the terrain. The accuracies computed for water, urban, forest, mountainous, and other areas were found to be 5.01 m, 8.03 m, 12.69 m, 17.14 m, and 10.21 m, respectively. The overall accuracy was computed as 10.92 m.

The orthorectification of the ASTER image was carried out using 12 different mathematical models. Based on the results, the models First Order 2D Polynomial, Direct Linear Transformation and First Order Polynomial with Relief have produced the worst results. On the other hand, the model Second Order Rational Function appears to be the best model to orthorectify the ASTER images. However, the developed model Second Order Polynomial with Relief provides simplicity, consistency and requires less number of GCPs when compared to the model Second Order Rational Function.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12606588/index.pdf
Date01 September 2005
CreatorsOk, Ali Ozgun
ContributorsTurker, Mustafa
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0018 seconds