Return to search

Channel based medium access control for ad hoc wireless networks

Opportunistic communication techniques have shown to provide significant performance improvements in centralised random access wireless networks. The key mechanism of opportunistic communication is to send back-to-back data packets whenever the channel quality is deemed "good". Recently there have been attempts to introduce opportunistic communication techniques in distributed wireless networks such as wireless ad hoc networks. In line of this research, we propose a new paradigm of medium access control, called Channel MAC based on the channel randomness and opportunistic communication principles. Scheduling in Channel MAC depends on the instance at which the channel quality improves beyond a threshold, while neighbouring nodes are deemed to be silent. Once a node starts transmitting, it will keep transmitting until the channel becomes "bad". We derive an analytical throughput equation of the proposed MAC in a multiple access environment and validate it by simulations. It is observed that Channel MAC outperforms IEEE 802.11 for all probabilities of good channel condition and all numbers of nodes. For higher number of nodes, Channel MAC achieves higher throughput at lower probabilities of good channel condition increasing the operating range. Furthermore, the total throughput of the network grows with increasing number of nodes considering negligible propagation delay in the network. A scalable channel prediction scheme is required to implement the practical Channel MAC protocol in practice. We propose a mean-value based channel prediction scheme, which provides prediction with enough accuracy to be used in the Channel MAC protocol. NS2 simulation result shows that the Channel MAC protocol outperforms the IEEE 802.11 in throughput due to its channel diversity mechanism in spite of the prediction errors and packet collisions. Next, we extend the Channel MAC protocol to support multi-rate communications. At present, two prominent multi-rate mechanisms, Opportunistic Auto Rate (OAR) and Receiver Based Auto Rate (RBAR) are unable to adapt to short term changes in channel conditions during transmission as well as to use optimum power and throughput during packet transmissions. On the other hand, using channel predictions, each source-destinations pair in Channel MAC can fully utilise the non-fade durations. We combine the scheduling of Channel MAC and the rate adaptive transmission based on the channel state information to design the 'Rate Adaptive Channel MAC' protocol. However, to implement the Rate adaptive Channel MAC, we need to use a channel prediction scheme to identify transmission opportunities as well as auto rate adaptation mechanism to select rates and number of packets to transmit during those times. For channel prediction, we apply the scheme proposed for the practical implementation of Channel MAC. We propose a "safety margin" based technique to provide auto rate adaptation. Simulation results show that a significant performance improvement can be achieved by Rate adaptive Channel MAC as compared to existing rate adaptive protocols such as OAR.

Identiferoai:union.ndltd.org:ADTP/282024
Date January 2009
CreatorsAshraf, Manzur
Source SetsAustraliasian Digital Theses Program
LanguageEN-AUS
Detected LanguageEnglish
RightsCopyright 2009 Manzur Ashraf

Page generated in 0.002 seconds