In the current transmission systems, the transmission capacity is still not enough. The information bandwidth of the optical fiber communication system is limited by the optical amplifier bandwidth, and more efficient use of the bandwidth is a very important issue. Therefore, the amplitude and phase shift keying (APSK) is one attractive method of multi-bit per symbol modulation scheme to improve the spectral efficiency, and it can effectively increase the transmission capacity.
To improve the capacity and the spectral efficiency, the advanced modulation format is effective, and the coherent detection scheme is also effective. However, an optical phase-locked loop (PLL) to lock the local oscillator (LO) phase and the signal phase required for the homodyne detection is still difficult to realize and it makes the receiver circuit complicated. Using the digital coherent receiver, the optical carrier phase information can be recovered by means of the digital signal processing (DSP), and this scheme enables to eliminate the optical PLL circuit by the phase estimation algorithm through the DSP. The stored data can be offline processed by using the MATLAB program.
This master thesis is focusing on studying the transmission performance of the APSK format using the DSP in the digital coherent receiver. 497km transmission experiment has been conducted. Subsequently, the stored data are offline processed by the algorithms of the DSP. Then, the APSK performances between back-to-back and 497km transmission are compared.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0628111-184600 |
Date | 28 June 2011 |
Creators | Kung, Hui-Hsuan |
Contributors | Hung-Wen Chang, Hidenori Taga, Chin-Ping Yu, Cheng-Mu Tsai |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0628111-184600 |
Rights | campus_withheld, Copyright information available at source archive |
Page generated in 0.0017 seconds