Chen Benrong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 125-130). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- What' s Watermarking --- p.1 / Chapter 1.2 --- "Information Hiding, Steganography, and Watermarking" --- p.3 / Chapter 1.3 --- History of Watermarking --- p.5 / Chapter 1.4 --- Importance of Digital Watermarking --- p.8 / Chapter 1.5 --- Objectives of the Thesis --- p.9 / Chapter 1.6 --- Thesis Outline --- p.10 / Chapter 2 --- Applications and Properties of Audio Watermarking --- p.12 / Chapter 2.1 --- Applications --- p.13 / Chapter 2.1.1 --- Ownership Identification and Proof --- p.13 / Chapter 2.1.2 --- Broadcast Monitoring --- p.16 / Chapter 2.1.3 --- Other Applications --- p.18 / Chapter 2.2 --- Properties --- p.19 / Chapter 2.2.1 --- Transparency --- p.20 / Chapter 2.2.2 --- Robustness --- p.20 / Chapter 2.2.3 --- Other Properties --- p.21 / Chapter 3 --- Possible Methods for Audio Watermarking --- p.24 / Chapter 3.1 --- Overview of Digital Audio Watermarking System --- p.25 / Chapter 3.2 --- Review of Current Methods --- p.27 / Chapter 3.2.1 --- Low Bit Coding --- p.27 / Chapter 3.2.2 --- Phase Coding --- p.28 / Chapter 3.2.3 --- Echo Coding --- p.29 / Chapter 3.2.4 --- Spread Spectrum Watermarking --- p.30 / Chapter 3.3 --- Other Related Approaches --- p.31 / Chapter 3.4 --- Outline of Proposed New Method --- p.33 / Chapter 4 --- Audio Watermarking System Based on Spread Spectrum --- p.36 / Chapter 4.1 --- Introduction --- p.36 / Chapter 4.2 --- Embedding and Detecting Information Bit --- p.39 / Chapter 4.2.1 --- General Embedding Process --- p.39 / Chapter 4.2.2 --- General Detection Process --- p.43 / Chapter 4.2.3 --- Pseudorandom Bit Sequences (PRBS) --- p.45 / Chapter 4.3 --- An Optimal Embedding Process --- p.48 / Chapter 4.3.1 --- Objective Metrics for Embedding Process --- p.48 / Chapter 4.3.2 --- Content Adaptive Embedding --- p.52 / Chapter 4.3.3 --- Determination of Frame Length L --- p.57 / Chapter 4.4 --- Requirement For Transparency Improvement --- p.58 / Chapter 5 --- Sample and Frame Selection For Transparency Improvement --- p.60 / Chapter 5.1 --- Introduction --- p.60 / Chapter 5.2 --- Sample Selection --- p.61 / Chapter 5.2.1 --- General Sample Selection --- p.62 / Chapter 5.2.2 --- Objective Evaluation Metrics --- p.65 / Chapter 5.2.3 --- Sample Selection For Transparency Improvement --- p.66 / Chapter 5.2.4 --- Theoretical Analysis of Sample Selection --- p.87 / Chapter 5.3 --- Frame Sclcction --- p.90 / Chapter 5.3.1 --- General Frame Selection --- p.91 / Chapter 5.3.2 --- Frame Selection For Transparency Improvement --- p.94 / Chapter 5.4 --- Watermark Information Retrieve --- p.103 / Chapter 6 --- Psychoacoustic Model For Robustness Verification --- p.105 / Chapter 6.1 --- Introduction of Human Auditory System --- p.106 / Chapter 6.1.1 --- Absolute Hearing Threshold --- p.106 / Chapter 6.1.2 --- Critical Bands --- p.108 / Chapter 6.1.3 --- Masking Effect --- p.111 / Chapter 6.2 --- Psychoacoustic Model of Human Auditory System --- p.112 / Chapter 6.3 --- Robustness Verification by Psychoacoustic Model Analysis --- p.117 / Chapter 7 --- Conclusions and Suggestions For Future Research --- p.121 / Chapter 7.1 --- Conclusions --- p.121 / Chapter 7.2 --- Suggestions For Future Research --- p.123 / Bibliography --- p.125
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324263 |
Date | January 2003 |
Contributors | Chen, Benrong., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xvi, 130 leaves : ill. ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0022 seconds