Return to search

Stochastic heat equations with memory in infinite dimensional spaces

This thesis is concerned with stochastic heat equation with memory and nonlinear energy supply. The main motivation to study such systems comes from Thermodynamics, see [85]. The main objective of this work is to study the existence and uniqueness of solutions to such equations and to investigate some fundamental properties of solutions like continuous dependence on initial conditions. In our approach we follow the seminal papers by Da Prato and Clement [10], where the stochastic heat equation with memory is tranformed into an integral equation in a function space and the so-called mild solutions are studied. In the aforementioned papers only linear equations with additive noise were investigated. The main contribution of this work is the extension of this approach to nonlinear equations. Our main tools are the theory of stochastic convolutions as developed in [33] and the theory of resolvent kernels for deterministic linear heat equations with memory, see[10]. Since the solution at time t depends on the whole history of the process up to time t, the resolvent kernel does not define a semigroup of operators in the state space of the process and therefore a ???standard??? theory of stochastic evolution equations as presented in the monograph [33] does not apply. A more delicate analysis of the resolvent kernles and the associated stochastic convolutions is needed. We will describe now content of this thesis in more detail. Introductory Chapters 1 and 2 collect some basic and essentially well known facts about the Wiener process, stochastic integrals, stochastic convolutions and integral kernels. However, some results in Chapter 2 dealing with stochastic convolution with respect to non-homogenous Wiener process are extensions of the existing theory. The main results of this thesis are presented in Chapters 3 and 4. In Chapter 3 we prove the existence and uniqueness of solutions to heat equations with additive noise and either Lipschitz or dissipative nonlinearities. In both cases we prove the continuous dependence of solutions on initial conditions. In Chapter 4 we prove the existence and uniqueness of solutions and continuous dependence on initial conditions for equations with multiplicative noise. The diffusion coefficients defined by unbounded operators are allowed.

Identiferoai:union.ndltd.org:ADTP/235227
Date January 2005
CreatorsXie, Shuguang, School of Mathematics, UNSW
PublisherAwarded by:University of New South Wales. School of Mathematics
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Shuguang Xie, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0023 seconds