Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2017. / High Voltage Direct Current (HVDC) transmission is a safe and efficient technology designed to deliver large amounts of electrical power over long distances with minimal losses and at low costs. HVDC links require converters and filters at both terminal stations. The core component of the HVDC system is the power converter that connects the DC and AC systems together. The conversion from AC to DC, and vice versa, is achieved mainly through electronic switches called thyristors. The thyristor-based Line Commutated Converter (LCC) is a mature and trusted technology for HVDC transmission throughout the world.
HVDC converters are bidirectional and can function in either rectification (AC to DC) or inversion mode (DC to AC). This is achieved when the voltage polarity across the converter gets swapped by the controllers, because current cannot change its direction in thyristors.
In this thesis an analytical model of the HVDC converters is developed in the frequency domain by modelling it in DIgSILENT. The objective is to study the harmonics induced to the AC side from HVDC converters. Therefore, it is important in the real world to understand the principles, what causes harmonics to be generated in HVDC and transferred to the HVAC system.
The objective of this thesis is to investigate the effectiveness of mitigation techniques used, on how they reduce harmonics by keeping these harmonic levels within specified values admissible by international standards (e.g. IEEE, etc).
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:cput/oai:localhost:20.500.11838/2461 |
Date | January 2017 |
Creators | Mushagala, Jimmy Matabaro |
Contributors | Atkinson-Hope, Gary |
Publisher | Cape Peninsula University of Technology |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | http://creativecommons.org/licenses/by-nc-sa/3.0/za/ |
Page generated in 0.002 seconds