In this thesis, we report the development of two types of optical sensors, one for high temperature pressure measurements and the other for real-time particle detection. With a high melting temperature (over 2000°C), low optical loss, and excellent corrosion resistance, sapphire (α-Al₂O₃) is ideal for high temperature sensing applications. Fabry-Perot (FP) cavity with optical interrogation of pressure response. The prototype is based on an extrinsic FP interferometer design and is constructed by combining reactive ion etching (RIE) with direct wafer bonding. Long-term testing proves that the adhesive-free wafer bond is sufficient to create a sealed Fabry-Perot cavity as a pressure transducer. Pressure measurement over a range of 6 to 200 psi has been demonstrated at room temperature using white-light interferometry.
For the other sensor, the goal is to detect the presence of micro- and nanoparticles in real time. The sensor is based on a silica fiber taper, and we aim to detect particle presence by measuring optical scattering and absorption induced by particles attached to the taper surface. To establish the relationship between particle density and optical transmission loss, we first consider a model where Au nanospheres are self-assembled on taper surface through electrostatic interaction. An analytical model is established to describe the adsorption of gold nanospheres onto cylindrical and spherical silica surfaces from quiescent aqueous particle suspensions. The curved surfaces of the fiber taper and microspheres are coated with nm-thick layer of a polycation, enabling irreversible adsorption of the negatively charged spheres. Our results fit well with theory, which predicts that the rates of particle adsorption will depend strongly on the surface geometry. In particular, adsorption is significantly faster on curved than on planar surfaces at times long enough that the particle diffusion length is large compared to the surface curvature. This is of particular importance for plasmonic sensors and other devices where particles are deposited from a suspension onto surfaces which may have non-trivial geometries.
We have established a theoretical model that can describe optical loss generated by particles on taper surface. This theory is validated by measuring, in real time, optical loss during the self-assembly of gold nanoparticles. We find that the measured optical loss can be quantitatively explained by the presence of multiple guided modes within the fiber taper region. Based on this work, we incorporate a fiber taper into a cascade impactor and show that welding aerosols attached to the fiber taper surface can induce measurable transmission loss during the welding process. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/77229 |
Date | 21 November 2012 |
Creators | Yi, Jihaeng |
Contributors | Electrical and Computer Engineering, Xu, Yong, Heflin, James R., Meehan, Kathleen, Safaai-Jazi, Ahmad, Wang, Anbo |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Dissertation, Text |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds