Return to search

Agmon-type estimates for a class of jump processes

In the limit we analyze the generators of families of reversible jump processes in the n-dimensional space associated with a class of symmetric non-local Dirichlet forms and show exponential decay of the eigenfunctions. The exponential rate function is a Finsler distance, given as solution of certain eikonal equation. Fine results are sensitive to the rate functions being twice differentiable or just Lipschitz. Our estimates are similar to the semiclassical Agmon estimates for differential operators of second order. They generalize and strengthen previous results on the lattice.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:5699
Date January 2012
CreatorsKlein, Markus, Léonard, Christian, Rosenberger, Elke
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypePreprint
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0024 seconds