Return to search

Studies on lyotropic chromonic liquid crystals in nematic and biphasic regions

Chromonic liquid crystals are a relatively new class of lyotropic liquid crystals. In an effort to understand this lyotropic phase better, studies on the phase behavior, defects formed in these systems and characterization of the order were performed. We studied three chromonic liquid crystal materials in nematic and biphasic regions: Sunset Yellow FCF (SSY, a food dye), a cationic perylene diimide derivative (PDI, a conducting dye) and cromolyn sodium (DSCG, a drug). For SSY chromonics in the nematic region, order parameters ( and ) were obtained by polarized Raman measurements. Using the order parameters the flow behavior was predicted and was found to be non-flow aligning. A comprehensive viscoelastic property set of SSY chromonics was obtained by studying the statics and dynamics of defects during the formation of planar aligned monodomain. Applications of PDI thin films as vapor sensors were explored; anisotropic electronic properties of oriented PDI films show good conductivity along the columns presumably arising from the overlap between the ? systems. In the biphasic region, growth and fluctuation of SSY tactoids and interesting patterns of biphasic DSCG under capillary geometry were observed; elastic properties and surface tension were estimated based on the shape of DSCG tactoids. Polymer dispersed lyotropic chromonic liquid crystals with different drop shapes and director configurations were also fabricated using various water-soluble polymers.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/50131
Date12 January 2013
CreatorsYao, Xuxia
ContributorsMohan, Srinivasarao
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation

Page generated in 0.002 seconds